
A Topic Model and Test History-Based Test Case
Recommendation Method for Regression Testing

Hirohisa Aman∗, Takashi Nakano†, Hideto Ogasawara† and Minoru Kawahara∗
∗Center for Information Technology, Ehime University, Matsuyama, Ehime 790-8577, Japan

†Corporate Software Engineering & Technology Center, Toshiba Corporation, Kawasaki, Kanagawa 212–8585, Japan

Abstract—In the regression testing, an oversight of a regression
is a serious problem to be avoided. A test engineer usually selects
test cases to rerun for a regression testing. While the selection is
a useful expert decision, there is also a risk of missing some
important test cases. To support a more effective regression
testing, this paper focuses on the following two kinds of data:
1) the similarity of test cases in terms of their topics, and 2)
the test history. Then, the paper proposes a hybrid method for
recommending test cases in two steps by using the above data. As
the thirst step, it recommends test cases which are highly-similar
to the manually-selected ones. Then, as the second step, the
method recommends the remaining test cases in decreasing order
of priority computed by using the test history. The usefulness of
the proposed method is proved through an empirical study using
a set of regression test data for an industrial product.

I. INTRODUCTION

A software product usually evolves through program modi-
fications which aim at enhancing functionalities or fixing faults
of the product, and such a software evolution is required to
provide an improved service to the users. However, those
modifications may also have risks of creating other faults
(regressions) [1]. In order to avoid releasing a faulty version
of the product, a careful regression testing—rerunning test
cases—should be performed when the product is changed.

To detect all regressions perfectly, it is ideal to rerun all
test cases whenever a part of the target product is changed.
However, rerunning all test cases would be unrealistic because
it requires a lot of time and effort [2] but it may be inefficient
to detect regressions: most of all test cases pass almost
always, and only a few ones may fail fairly infrequently.
Therefore, there have been many studies to prioritize test cases
toward a more efficient regression testing [3]. The test case
prioritization studies are classified into three types according
to what they are mainly based on: (1) the source programs to
be tested, (2) the test history and (3) the content of test cases.

The first type of study is to prioritize test cases by analyzing
the source programs to be tested. The common way among
these studies is to make links between a test case and its
corresponding programs which are tested by the test case.
When a source program is modified, those studies single out
the corresponding test cases which are associated with the
modified parts and/or evaluate a test case’s degree of closeness
to the modified programs (e.g., [4], [5]).

The second type of study utilizes the test history which
consists of the testing results such as the version of tested
product, the IDs of used test cases and their results (passes

or fails). This type of study evaluates a test case’s priority by
using its failure detection rate in the past and/or its version
gap between the current version and the last-run one [6], [7].
While the test history-based methods are not directly related to
program modifications, they can be useful to prevent overlook-
ing unexpected regressions which are apparently independent
of the modified programs.

The third type of study focuses on the content of test cases.
Test cases are either test programs (for an automated test)
or test scripts (for a manual test). In this type of study, test
cases are analyzed by using the natural language processing
techniques such as the morphological analysis and the topic
analysis, and their similarities or dissimilarities to each other
are evaluated. Then, test cases are prioritized for a better
regression testing, by using their similarities/dissimilarities to
the set of already selected (being rerun) test cases [8], [9].

When a test engineer performs a regression testing for a
product, he/she does not always know anything about the
corresponding code modifications made to the product [10].
Furthermore, if the coding work is an (offshore) outsourcing,
it would be harder to obtain the details of modifications. In
such a case, we cannot utilize the above first type of study
which is based on the source program analysis. Since our (the
authors’) context is in this case, we will focus on the second
and the third types of study—using the test history and the
content of test cases—in this paper.

For a regression testing, test engineers may select test cases
to rerun from their test case pool in accordance with their
knowledge and/or experience. We believe those selections are
useful because it is a kind of expert decision. However, there
would also be a risk of overlooking regressions. Hence, while
respecting their first selection, we consider recommending
additional test cases which are useful to detect regressions. The
key contribution of this paper is to propose a novel method
for making a useful recommendation to prevent overlooking
regressions by utilizing the test history and the topic analysis
to the test cases [11], which is a combination of the above
second and third types of study.

The remainder of this paper is organized as follows. Section
II explains the test case recommendation in our context and
related previous work, then proposes a novel method. Section
III reports the empirical study that we conducted to show a
usefulness of our proposal. Section IV briefly describes the
related work. Finally, Section V presents our conclusion and
future work.



II. EFFECTIVE TEST CASE RECOMMENDATION FOR
REGRESSION TESTING

A. Test Case Recommendation Problem

We first explain our context of regression testing. For a
regression testing of a product, we have a set of test cases
(test case pool). These test cases are written in Japanese and
they are test scripts to manually operate the product by a
test engineer. At a regression testing, the test engineer knows
which functionalities were upgraded and/or which bugs were
fixed. Then, the test engineer singles out some test cases from
the pool, which seem to be related to the modifications.

Now, in order to reduce a risk of overlooking regressions,
we want to recommend adding other test cases which are
remained in the pool and yet seem to be useful to detect re-
gressions (see Fig. 1). Since the testing is performed manually,
the recommendation set should be minimal because of their
testing cost. Our available data are the test history (see Table
I) and the content of test cases (see Fig. 2).

Table I shows an example of test history. In the table,
symbols “P,” “F” and “–” signify the “pass,” “fail” and “no-
run” of the corresponding test case at the corresponding
version, respectively. For example, test case t2 passed at
version v2 and failed at v4, and t3 was not run at v1. In
Table I, v5 is the version at which we are about to perform a
regression testing. Symbol “✓” means that the corresponding
test cases are selected by the test engineer; the remaining test
cases shown as “?” are the candidates of our recommendation.

Our goal is to recommend useful test cases from the candi-
date set. A better recommendation means that more regressions
are detected by fewer test cases, i.e., test cases with higher
priorities are more likely to detect regressions. This is formally
defined as the following test case recommendation problem.

Definition 1 (The test case recommendation problem):
Given the set of test cases, T , which consists of n test cases:

T = {ti}ni=1. Suppose a test engineer selected m test cases
t1,j from T (for j = 1, . . . ,m); Let H = {t1,j |t1,j ∈ T}mj=1.
Then, recommend the remaining test cases in decreasing order
of priority, as a sequence (t2,r)r=1,...,n−m where (t2,r ∈
T
∧

t2,r ̸∈ H) and t2,r has a higher priority than t2,r′ if r < r′

(for r = 1, . . . , n−m).

Fig. 1. Outline of test case recommendation.

Hover the mouse cursor over the “?” icon. Then, check if the correspond-
ing help message is displayed in a pop-up window.

Fig. 2. Example of test case (translated into English).

TABLE I
EXAMPLE OF TEST HISTORY.

test version
case v1 v2 v3 v4 v5
t1 P – – – ?
t2 F P P F ✓
t3 – P – – ?
t4 – F P P ?
t5 P – – – ✓
...

...
...

...
...

...
(P: pass; F: fail; –: no run; ✓: selected; ?: candidate)

The usefulness of recommendation is evaluated by the area
under the curve of the Alberg diagram (AUCA)1 [12]. A higher
AUCA value means a better recommendation because more
test cases succeeded in detecting regressions, in an earlier
phase of the regression testing.

□
Figure 3 shows examples of Alberg diagrams. The best case

is in Fig. 3 (a) since all regressions are detected by the higher
priority test cases. If some high-priority test cases fail to detect
regressions, the diagram becomes like Fig. 3 (b) and its AUCA
value (the area under the curve) gets smaller than (a).

B. Test Case Recomendations Using Test History and/or Con-
tent of Test Cases

To recommend (prioritize) test cases, we use the test history
and the content of test cases. In this subsection, we describe
methods proposed in the previous work.

In the test history-based prioritization, the following two
types of data are mainly focused:

[Type-1] Whether a test case was run or not at a version.
[Type-2] Whether a test case failed or not at a version.
1) Application of the Exponential Weighted Moving Average

and the Exponential Smoothing: Kim and Porter [6] proposed
to leverage the exponential weighted moving average and the
exponential smoothing [13]. For a pair of test case ti and
version vj , they defined the selection probability of ti as:

P (ti, vj) = α · hij + (1− α)P (ti, vj−1) , (1)

where hij ∈ {0, 1} is the test history observation for ti at
vj , and α is a smoothing constant used to weight individual
history observations (0 ≤ α ≤ 1); P (ti, v0) = hi1.

(a) the best case (b) another case

Fig. 3. Examples of Alberg diagrams.

1The vertical axis signifies the accumulated number of faults (regressions)
in the original Alberg diagram. However, we replace it by the accumulated
number of regression-detected test cases because we cannot trace the faults
in the source code; While the test cases and the test history are available, the
source code is not available in our context.



A higher P (ti, vj) means a higher priority of ti for a
regression testing at the next version, vj+1. Kim and Porter
proposed to use Eq. (1) for both the above two types of data.

For type-1 data, let hij = 1 if ti was “not run” at vj ;
otherwise, hij = 0. Then, they used Eq. (1) with a low α,
e.g., α = 0.1. If ti has not been run for more versions until
vj , P (ti, vj) gets larger. For example, let us consider t1 shown
in Table I. Here, we have (h1k) = (0, 1, 1, 1). When α = 0.1,
their selection probabilities are upgraded from v1 to v4 as:
P (t1, vk) = 0 → 0.1 → 0.19 → 0.271 .

For type-2 data, let hij = 1 if ti “failed” at vj ; otherwise,
hij = 0. In this case, they proposed to use Eq. (1) with a
high α, e.g., α = 0.9. If ti has consecutively failed for more
versions until vj , P (ti, vj) gets larger. Let’s take t2 shown
in Table I for example. We have (h2k) = (1, 0, 0, 1). When
α = 0.9, their selection probabilities change from v1 to v4 as:
P (t2, vk) = 0.9 → 0.09 → 0.009 → 0.9009 .

For the sake of convenience, we will call the above methods
using the selection probabilities for type-1 and type-2 as
“SP1” and “SP2,” respectively, in the following sections.

2) Application of the Mahalanobis-Taguchi Method: Aman
et al. [7] proposed to integrate the above two types of data
using the notion of the Mahalanobis-Taguchi method2 [14].

In [7], Type-1 and type-2 data are measured by the following
two metrics GLC and FR, respectively.

1) The Gap between the Last run version and the Current
version (GLC): For a test case ti, GLC(ti) is the number
of consecutive versions at which ti was not run until the
current version.

2) The Failure Rate (FR): For a test case ti, FR(ti) is the
failure rate of ti until the current version. That is to say,
it is the number of versions failed by ti, divided by the
number of versions at which ti was run.

For example, GLC(t1) = 4, GLC(t4) = 1, FR(t1) = 0 and
FR(t2) = 2/4 in Table I, where the current version is v5.

A test case having a greater GLC value has not been run
for more versions after its last run. Therefore, such a test case
may have a higher risk of overlooking regressions. While test
engineers often select test cases which seem to be related with
the functionalities upgraded at the version, unexpected parts
might include regressions. It is better to rerun other test cases
as well, even if they seem to have no relation with the changes.

A test case having a higher FR value has a better track
record for finding a regression in the past. Such a test case
may test a part which is likely to be faulty in the product, and
we can expect a higher ability to find a regression again. It is
better to rerun as many such test cases as possible.

On both of these metrics, value 0 represents the correspond-
ing test case has the lowest expectation to find a regression.
Thus, the distance between xi

T = (GLC(ti),FR(ti)) and
0T = (0, 0) can express the worth of ti to rerun in terms
of these metrics. A straightforward way of computing the

2The Mahalanobis-Taguchi method is one of statistical quality control
methods, which leverages the Mahalanobis distance to detect abnormal (poor
quality) objects, etc. See [14] for the details.

distance is dE(xi) =
√

(xi − 0)T (xi − 0) , which is the
Euclidean distance. However, it has a lack of consideration for
the dispersion of data. Since metric GLC has a wider range
than FR, GLC can have a greater impact on the computed
distance. The following Mahalanobis distance is a better
choice to consistently integrate the effects of two metrics:

dM (xi) =
√

(xi − 0)TS−1(xi − 0) , (2)

where S is the covariance matrix [15] of GLC values and
FR values, and S−1 is its inverse matrix. Since it uses the
covariance matrix, the Mahalanobis distance can consider not
only the dispersion on each axis (a certain metric) but also
their covariances of data, i.e., correlations between metrics.

For example, if we have the following covariance matrix S,

S =

[
4.000 −0.200
−0.200 0.050

]
, S−1 =

[
0.3125 1.2500
1.2500 25.000

]
,

we obtain dM (x1) ≃ 2.24, dM (x3) ≃ 1.68 and dM (x4) ≃
1.98. On the other hand, by using the Euclidean distance, we
get dE(x1) = 4, dE(x3) = 3 and dE(x4) ≃ 1.05. That
is to say, although t1 is the worthiest in {t1, t3, t4} for both
the Euclidean distance and the Mahalanobis one, the second
worthiest test cases are different between two distances; In the
Euclidean distance, the value of GLC seems to be dominant.

For the sake of convenience, we hereinafter call the above
method using the Mahalanobis distance as “MD.”

3) Content-Based Clustering of Test Cases and Combina-
tion with MD: We have focused on the content of test cases
in the past [9]. In [9], we proposed to recommend test cases
in the following two steps:

1) First, categorize the test cases into some clusters in terms
of their similarities, based on their mutual words.

2) Then, recommend test cases from the same cluster as
the manually selected test cases3. The recommendation
is made by the MD method mentioned above.

When an engineer selected a test case tx and there is similar
but not identical another test case ty , the engineer maybe
should run not only tx but also ty . For example, suppose we
want to test two different functions, A and B, under a certain
condition: tx executes in the order (A,B), and ty does in the
opposite order (B,A). In such a case, the contents of tx and
ty must be similar. However, since they are not identical, we
should not skip over either tx or ty; we have to rerun both of
them. Some test engineers might rerun only tx, and overlook
a regression which would have been detected by ty .

While our previous method [9] partially succeeded to rec-
ommend test cases which can detect regressions, it had the
following challenge: how to deal with the variation of words
among test cases. This is from a linguistic feature in our
dataset. Our dataset was the set of test cases written in a
natural language, Japanese. Hence, different people may write
different phrases with using different words for the same or
similar purpose. Especially, Japanese tends to have a high

3In the case of Table I, the manually selected test cases are t2 and t5.



vagueness of phrase. Since the previous work considered the
similarity between test cases by using the exact match of
mutual words, such a vagueness may be a serious threat to
validity. To solve the above challenge in our previous work, we
will propose to apply the topic model in the next subsection.

C. Proposal

The topic model is a popular model for analyzing docu-
ments written in a natural language [16], [17]. In the model-
ing, the words are extracted from the documents and their
co-occurrence relationships are analyzed. Through the co-
occurrence analysis, each word is liked to one or more topics,
where topics are latent variables (see Fig. 4). This liking work
is like a clustering of words, but it does not limit word’s cluster
to a specific one. Finally, each document is associated to one
or more topics. While topics do not explicitly appear in a
document, the document’s feature is expressed by the feature
vector (p1, . . . , pk) where pi denotes the probability that the
document has the i-th topic; k is the number of topics. The
topic modeling is performed by the latent Dirichlet allocation
(LDA) [18] which is a popular statistical method to estimate
the latent topics in documents. There are implementations
of the LDA for natural language documents: for example,
topicmodels package4 is available for R5.

By using the topic model, we can solve the challenge
mentioned in Section II-B3, i.e., vagueness of words. We
now can consider the similarity between test cases by not the
mutual words but the latent semantics of words. That is to say,
since the feature vector (p1, . . . , pk) presents the membership
degrees to the topics, the semantic similarity between test cases
can be computed by using the feature vectors. We define the
similarity between test cases tx and ty as

sim(tx, ty) = 1− 1

k

k∑
i=1

|pxi − pyi| , (3)

where k is the number of topics, and pxi and pyi are the
probabilities that tx and ty have the i-th topic, respectively. It
is based on the Manhattan distance, and the reason why we
use it is from the experimental results by Thomas et al. [8].

Now we propose a test case recommendation method as the
following two steps:

Fig. 4. Image of latent topics.

4https://cran.r-project.org/web/packages/topicmodels/
5R is one of the popular free software environments for statistical computing

and graphics. https://www.r-project.org/

[Step-1] Suppose m test cases { t1,i }i=1,...,m are manually
selected by a test engineer. Define the similarity of
a remaining test case tx to the selected set as

s(tx) = min
i=1,...,m

[ sim(tx, t1,i) ] . (4)

Then, recommend test cases having high similari-
ties with the manually-selected set.

[Step-2] Recommend the remaining test cases by the SP1,
SP2 or MD method.

The first step uses only the similarity of test case. If a
highly-similar test case is remained (not selected), it may cause
an overlooking of regression. We will decide an appropriate
threshold of similarity in our empirical study (Section III).
In the second step, we follow the conventional prioritization
method (SP1, SP2 or MD). The above proposal is the
key contribution of this paper, which combines the previous
methods mentioned in Section II-B: Once a manually-selected
“seed” subset of test cases is given, the proposed method
automatically prioritize the remaining test cases in the pool.

III. EMPIRICAL STUDY

A. Dataset

To examine our proposal, we obtained data of regression
testing for a Web-based system which has been developed and
maintained by Toshiba corporation6. We have 300 test cases
(n = 300) and a test history for 13 versions {vj}13j=1 of the
product. For this study, we manually reran all of 300 test cases
at the latest version. It took 539 minutes and revealed that
there are regressions overlooked by a past regression testing—
22 test cases failed at the latest version. The oversight was
occurred at version v7. For v7, seven (m = 7) test cases were
manually selected from the test case pool, but more test cases
should be selected to detect regressions earlier.

In this section, we examine if the proposed method makes a
better recommendation for the regression testing at v7, where
we consider v7 to be the current version for computing metric
values mentioned above.

B. Procedure

Our empirical study is conducted in the following steps.
1) Build a topic model of our test cases. Prior to the

topic modeling, we have to extract words from the test
cases. Since they are written in Japanese, we perform a
tokenization, a stemming, an elimination of stop words,
a morphological analysis, and an extraction of words7 by
MeCab8 which is a popular analyzer for Japanese.
For a model construction, the number of topics (k) must
be given as a key parameter.

2) Given manually-selected test cases {t1,j}j=1,...,m. For
each test case tx remained in the test case pool, compute
s(tx) according to Eq.(4).

6We omit the details of the product since they are confidential data.
7Nouns, verbs and adjectives are extracted in this study.
8http://taku910.github.io/mecab/



3) Recommend highly-similar test cases {t2,r|s(t2,r) ≥ τ}
in decreasing order of similarity, where τ is the threshold
of similarity; we will empirically decide τ .

4) Recommend the remaining test cases by one of the con-
ventional history-based methods—SP1, SP2 or MD.

C. Results

To decide the number of topics (k), we first built a topic
model with many (= 100) topics and performed the principal
component analysis9. Because the top 19 principal components
can explain over 90% information of the original space, we
decided the number of topics to be 19 in this empirical study.

We also have to decide the threshold of similarity (τ ). Since
we have no theoretical basis to decide a proper τ , we will try
some values: τx (for x = 1, 2, 3, 4, 5) where τx corresponds
to the top x% in the similarity distribution.

Table II shows the AUCA values of recommendations. In
the table, the row labeled as “history only” presents the AUCA
values of the conventional history-based recommendations:
SP1 (α = 0.1), SP2 (α = 0.9) and MD. Each row of τx
(for x = 1, . . . , 5) gives the AUCA values of recommendations
made by the proposed method using τ = τx and the corre-
sponding column’s history-based method (SP1, SP2 or MD).
A percentage shown in parentheses denotes the difference
of the corresponding AUCA values between the proposed
method and the conventional (history only) one: for example,
the AUCA value of the recommendation made by using only
SP2 is 4252, and the AUCA value of the one made by the
proposed method using τ1 and SP2 is 4339, so the percentage
of difference is obtained as: (4339− 4252)/4252 ≃ 2.0%.

For each column in Table II, the highest AUCA value is
indicated by boldface. Regardless of the used history-based
method, the proposed method with τ = τ1 or τ2 show the
best performance in recommending test cases in our dataset.

D. Discussions

Our empirical results showed that the proposed method
using τ = τ1 or τ2 is the best, i.e., it is useful to rerun the
most 1% or 2% similar test cases at first.

TABLE II
EMPIRICAL RESULTS (AUCA VALUES)

history-based method
SP1 SP2 MD

history only 5166 4252 5318
τ1 5409 (+4.7%) 4339 (+2.0%) 5386 (+1.3%)
τ2 5374 (+4.0%) 4390 (+3.2%) 5380 (+1.2%)
τ3 5320 (+3.0%) 4333 (+1.9%) 5325 (+0.1%)
τ4 5265 (+1.9%) 4295 (+1.0%) 5269 (−0.9%)
τ5 5211 (+0.9%) 4238 (−0.3%) 5212 (−2.0%)

9To decide the number of topics, we first tried using ldatuning package
of R, https://cran.r-project.org/web/packages/ldatuning/vignettes/topics.html,
which provides topic evaluations using four metrics. Unfortunately, these
four metrics showed different tendencies and it was hard to decide a specific
number of topics. Therefore, we dare to use the principal component analysis
as a substitute way of determining the number of topics while it is not
orthodox. We need a further study for a better way in the future.

Because of their high similarities, the test engineer might
omit them as unimportant ones: Suppose there is a highly-
similar pair of test cases, tx and ty . When the engineer reran
tx and it passed, he/she would highly expect that ty also passes
since the highly-similar tx passed. Then, he/she might consider
that it does not matter to omit a rerunning of ty . However,
the AUCA value gets higher by prioritizing highly-similar test
cases first, so the results prove an importance of focusing on
similar test cases. Figure 5 (a) presents the Alberg diagrams
of the conventional method and the proposed one using τ1
with MD (whose X-axis is limited to 100). At the kickoff
point in Fig. 5 (a), highly-similar test cases successfully detect
regressions which were overlooked by manually-selected ones.

On the other hand, the usefulness of recommending similar
test cases seems to be limited to highly-similar ones. Indeed, τ5
showed the lowest AUCA values for all methods (see Table II).
Figure 5 (b) presents the Alberg diagrams of the conventional
method and the proposed one using τ5 with MD. Although
highly-similar test cases are really useful (see Fig. 5(a)),
recommending more test cases seems to delay the growth of
regression detections (see Fig. 5(b)). Since a regression testing
with only similar test cases may have a lower coverage, such
a delay of growth in detecting regressions would be caused.

E. Threats to Validity

While our recommendation of highly-similar test cases
worked for a successful detection of regressions in this em-
pirical study, it might depend on the product’s features, the
way of testing, or even who did the regression test. To prove
a generality of our results, we also need to perform further
experiments using other products in the future.

Since we could not trace a link between a code change and
a test case in our context, we have discussed the efficiency
of testing with the number of “failed test cases” but not the
number of “faults.” That is to say, two or more test cases
might detect the same fault. This is our big threat to validity
and limitation in this study. In order to analyze the impact of
such a difference of viewpoint, we have to do further analyses
using more detailed testing and fault data in the future.

We used the LDA for our topic modeling. While the LDA
is the most popular method, the performance depends on the
parameters used for the computation. We adopted the default
parameters of the lda function included in topicmodels
package. Although the default parameters might not be appro-
priate to the test cases written in Japanese, we did not tune the

0 20 40 60 80 100

0
5

1
0

1
5

2
0

2
5

Recommendation

A
cc

u
m

u
la

te
d
 #

 o
f

 r
eg

re
ss

io
n
−

d
et

ec
te

d
 t

es
t 

ca
se

s

Proposed Conventional

0 20 40 60 80 100

0
5

1
0

1
5

2
0

2
5

Recommendation

A
cc

u
m

u
la

te
d
 #

 o
f

 r
eg

re
ss

io
n
−

d
et

ec
te

d
 t

es
t 

ca
se

s

Proposed Conventional

(a) τ = τ1 (b) τ = τ5

Fig. 5. Comparisons of Alberg diagrams.



parameters because the tuning can be another threat to validity.
A further analysis on the parameter tuning is our future work.

IV. RELATED WORK

Thomas et al. [8] utilized the topic model to prioritize
test cases. In their method, dissimilarities between test cases
(programs) are computed by using the Manhattan distance
of corresponding topic vectors. They proposed to iteratively
select test cases in decreasing order of dissimilarity to the
already-selected test cases in order to expand the test cov-
erage. Hemmati et al. [19] applied the notion of the topic-
based prioritization proposed in [8] to test cases written in a
natural language: they prioritized test cases by maximizing
dissimilarities to already-prioritized test cases in terms of
their topics. Our fundamental way of evaluating the similar-
ity/dissimilarity between test cases is common to [8], [19].
While these previous work prioritized test cases to get a higher
diversity with a fewer test cases, we have another viewpoint—
we dare to recommend test cases which are highly-similar
to manually-selected ones. The aim of such an opposite way
of prioritization is to avoid a human error. Since such our
prioritization would produce a lower coverage, we have a
hybrid strategy: after we recommend a few highly-similar test
cases, we switch our strategy to the history-based method.

Saha et al. [20] proposed to reduce a test case prioritization
problem to an information retrieval one. In their approach,
a code change is corresponding to a query, and test cases
are regarded as a set of documents. Once a code change is
given, test cases are prioritized in terms of the similarity to
the change, where the similarity is computed by the tf/idf
term weighted vector space model [21]. They reported that
the proposed method works better to effectively prioritize test
cases through an empirical study using open source projects,
and the usefulness of leveraging a natural language processing-
based similarity evaluation for prioritizing test cases is proved.
Although we cannot get the code change information in our
context, it is common that test cases are prioritized based on
the similarity to a seed data—while Saha et al. focused on a
code change, we used a manually-selected test cases.

V. CONCLUSION

To enhance the manual regression testing, we focused on
the similarity between test cases using the topic model, and
proposed a novel method for recommending test cases. When
some test cases are manually selected for a regression testing,
the proposed method recommends additional test cases in the
following two steps. As the first step, the method recommends
test cases which are highly-similar to the manually-selected
ones. Then, as the second step, the method recommends test
cases in decreasing order of priorities which are computed by
the conventional test history-based method. Through an em-
pirical study, we proved that the proposed method successfully
enhances the performance of regression testing. Notice that the
first-step recommendation is limited to “highly” similar test
cases only in order to prevent a human error in the manual
selection; if we simply prioritized all test cases in decreasing

order of similarity, it would not effectively work to detect
various regressions. The proposed method uses both the test
case similarity and the test history in a hybrid manner.

Our future work includes: 1) a further study to automatically
decide a better threshold of the similarity between test cases,
and 2) a further analysis using other test data of other products
to examine the general usefulness of the proposed method.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments on an earlier version of this paper.

REFERENCES

[1] C. Jones, Applied Software Measurement: Global Analysis of Produc-
tivity and Quality, 3rd ed. New York, McGraw-Hill, 2008.

[2] J. Hartmann and D. J. Robson, “Techniques for selective revalidation,”
IEEE Software, vol. 7, no. 1, pp. 31–36, Jan. 1990.

[3] S. Yoo and M. Harman, “Regression testing minimisation, selection and
prioritisation: A survey,” Softw. Testing, Verification & Rel., vol. 22,
no. 2, pp. 67–120, Mar. 2010.

[4] D. Jeffrey and N. Gupta, “Test case prioritization using relevant slices,”
in Proc. 30th Annual Int’l Comp. Softw. & App. Conf., vol. 1, Sept.
2006, pp. 411–420.

[5] S. Mirarab and L. Tahvildari, “A prioritization approach for software
test cases based on bayesian networks,” in Proc. 10th Int’l Conf.
Fundamental Approaches to Softw. Eng., Mar. 2007, pp. 276–290.

[6] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in Proc.
24th Int’l Conf. Softw. Eng., May 2002, pp. 119–129.

[7] H. Aman, Y. Tanaka, T. Nakano, H. Ogasawara, and M. Kawahara,
“Application of Mahalanobis-Taguchi method and 0-1 programming
method to cost-effective regression testing,” in Proc. 42nd Euromicro
Conf. Softw. Eng. & Advanced App., Aug. 2016, pp. 240–244.

[8] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static
test case prioritization using topic models,” Empir. Softw. Eng., vol. 19,
no. 1, pp. 182–212, Feb. 2014.

[9] H. Aman, T. Nakano, H. Ogasawara, and M. Kawahara, “A test case
recommendation method based on morphological analysis, clustering
and the Mahalanobis-Taguchi method,” in Proc. 10th IEEE Int’l Conf.
Softw. Testing, V. & V. Workshops, Mar. 2017, pp. 29–35.

[10] M. J. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” in Proc. 6th Int’l Conf. Softw. Testing, V. & V., Mar.
2013, pp. 312–321.

[11] T. K. Landauer, D. S. McNamara, S. Dennis and W. Kintsch, Ed.,
Handbook of Latent Semantic Analysis. London, Routledge, 2014.

[12] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switches,” IEEE Trans. Softw. Eng., vol. 22, no. 12, pp.
886–894, Dec. 1996.

[13] R. G. Brown, Statistical Forecasting for Inventory Control. New York,
McGraw-Hill, 1959.

[14] G. Taguchi, S. Chowdhury, and Y. Wu, The Mahalanobis-Taguchi
System. New York, McGraw-Hill, 2001.

[15] G. J. G. Upton and I. Cook, A Dictionary of Statistics, 2nd ed. Oxford
University Press, 2008.

[16] T. Hofmann, “Probabilistic latent semantic indexing,” in Proc. the 22nd
Int’l ACM SIGIR Conf. Research & Dev. in IR, Aug. 1999, pp. 50–57.

[17] D. M. Blei, “Probabilistic topic models,” Commun. ACM, vol. 55,
no. 4, pp. 77–84, Apr. 2012.

[18] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Machine Learning Research, vol. 3, pp. 993–1022, Jan. 2003.

[19] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing man-
ual test cases in rapid release environments,” Softw. Testing, Verification
& Rel., vol. 27, no. 6, pp. e1609:1–25, Sept. 2017.

[20] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An information
retrieval approach for regression test prioritization based on program
changes,” in Proc. 37th Int’l Conf. Softw. Eng., May 2015, pp. 268–
279.

[21] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?–more
accurate information retrieval-based bug localization based on bug
reports,” in Proc. 34th Int’l Conf. Softw. Eng., June 2012, pp. 14–24.


