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Abstract—Once a software bug is reported, it is crucial to locate
the source file causing the bug and fix it as soon as possible. To
this end, there have been various studies for locating bugs with
the version control system and the bug reports. AmaLgam+ is
one of the most promising methods for localizing bugs. This
method quantifies the degree to which a source file causes the
bug from different five perspectives (metrics), and combines
those values (suspicious scores) into a single integrated score of
the source file. However, the method has a challenge regarding
the computation time because it uses the genetic algorithm
(GA) to combine the above five metrics. This paper proposes
an application of the Mahalanobis distance to the suspicious
score integration to overcome the above challenge. The proposed
method considers the above five metrics to be a five-dimensional
vector. It computes the Mahalanobis distance of the vector from
the origin as an alternative integrated suspicious score. The
empirical study using six open source software projects proves
that the proposed method has almost the same bug localization
accuracy as AmaLgam+ and can reduce the computation time
by up to 98%: e.g., while AmaLgam+ took about 3.5 hours, the
proposed method did it about 4 minutes.

Index Terms—Bug localization, mining software repositories,
Mahalanobis distance, computation time

I. INTRODUCTION

When a bug is reported to the software development or-
ganization, the developers need to localize the faulty (buggy)
source file that causes the reported bug. However, it may not
be easy because the bug report may not always present an
informative clue to detect the buggy file. Furthermore, large-
scale and complex software products tend to be plagued by
a lot of bug reports [1], [2]. A quick resolution of a newly-
reported bug is a crucial challenge in software maintenance.

The detection of buggy files is referred to as “bug localiza-
tion,” and various approaches have been studied [3]. In recent
years, many studies focused on information retrieval (IR)
techniques, and proposed IR-based bug localization methods
that apply IR methods to the bug reports and the software
repositories [4]–[12]. For instance, some methods analyzed the
similarity among bug reports using the natural language pro-
cessing techniques such as tf-idf method and picked already-
resolved bug reports similar to the new (unresolved) bug report
[4], [9], [10]. They then considered the source files that had
been fixed to resolve those old bugs to be bug-prone ones.
Other methods also focused on various data such as the bug-
fixing history recorded in the code repository, the stack trace
data given in the bug report, the bug report reporter.

Recently, Wang and Lo [7] proposed a promising bug
localization method, AmaLgam+. For a newly-reported bug,
this method evaluates the suspiciousness of a source file from
five different points of view, i.e., it measures the source file
using five different metrics quantifying the degree to which
the source file causes the reported bug. Then, AmaLgam+
combines these five evaluation values of a source file into
an integrated suspicious score by the genetic algorithm (GA).
Wang and Lo empirically proved that AmaLgam+ could
outperform the conventional bug localization methods [7].

Although AmaLgam+ is one of the most promising bug
localization methods, it has a challenge regarding the com-
putational cost. Because AmaLgam+ uses GA to tune the
weight coefficients to combine different metric values, it may
require a long tuning time. Moreover, it would be better to
rerun the tuning whenever the metric data set is updated. To
perform a better bug localization as quickly as possible, we
need to overcome that problem of computation time. Thus, we
propose another way of integrating different metric values in
this paper. Our proposal applies the Mahalanobis distance [13]
notion, which is commonly used in anomaly detection studies.
Because it can reasonably integrate different-scale metrics with
a low computational cost, we consider the proposed method
can be a lightweight alternative to AmaLgam+.

The remainder of this paper is organized as follows. Section
II describes AmaLgam+, and Section III presents our proposal,
the Mahalanobis distance-based method. Then, Section IV
reports the empirical study that we conducted to examine the
usefulness of the proposed method. Finally, Section V gives
the conclusion of this paper and our future work.

II. CONVENTIONAL METHOD: AMALGAM+

In this section, we briefly describe the bug localization by
a conventional method, AmaLgam+ [7]. Once a bug report is
given, it computes a suspicious score for each source file; the
suspicious score is computed by combining five metric values.

A. Metric(1): Version History-Based Metric

A version control system (VCS) records the source code
change history made during development and maintenance.
Such a change history may be beneficial to an efficient
bug localization because a prior bug fix may cause another
bug (fault) [14]. Rahman et al. [15] proposed a lightweight
method for predicting faulty files by focusing on the bug-fixing



commits in a VCS. Their method has been utilized in large-
scale software development projects [16]. AmaLgam+ uses
such a metric to quantify the suspicious level (fault-proneness)
of a file. We describe the metric below.

Suppose we have a new (not resolved) bug report and let
R be the set of bug-fixing commits that may relate to the
reported bug. A related bug-fixing commit c(∈ R) is a commit
satisfying the following two conditions 1) and 2).

1) The commit log of c includes “fix” or “bug.”
2) c was made within the last k days. Because an older

commit would be less likely to cause a newly-reported
bug, this metric focuses only on the recent bug-fixing
commits. Wang and Lo [7] set k to 15 empirically.

Let tc be the elapsed days after commit c. Now the suspicious
score of a file f , score1(f), is defined as follows:

score1(f) =
∑

c∈R∧f∈c

1

1 + e12(1−
k−tc

k )
. (1)

B. Metric(2): Bug Report Similarity-Based Metric

When two bug reports have similar contents, they may be
associated with each other and require to fix the same files
to resolve both of the bugs. We apply this notion to the bug
localization. Once we have a new bug report, we pick already-
resolved bug reports similar to the new one and focus on the
files fixed to resolve the above bugs. Those files may also be
related to the newly-reported bug.

AmaLgam+ quantifies the similarity between bug reports
using the tf-idf method in the following three steps.

1) Pre-processing of bug reports: Extract all tokens from
a bug report. If a token is a compound word written
in the camel-case style or the snake-case style, split it
into subwords following the compounding style; Then,
perform the stemming and the stop-word elimination.

2) Vectorization of bug reports: Compute the tf-idf value of
each word. Then, express each bug report by the multi-
dimensional vector whose elements are the tf-idf values
of the words appearing in the report.

3) Computation of bug report similarity: Let rnew and rold
be the new bug report and a resolved one, respectively.
Obtain the similarity between them sim(rnew, rold) as
the cosine similarity between the corresponding vectors.

Next, the suspicious score of a file is computed using the
above similarity. If rnew is more similar to rold and a file f
had been fixed to resolve rold, f is more suspicious that it
may also cause the newly-reported bug. Hence, the suspicious
score of f is computed as follows1:

score2(f) =
∑

ri∈{r|f∈mod(r)}

sim(rnew, ri)
2

|mod(ri)|
, (2)

where mod(r) is the set of files fixed to resolve the bug report
r, and {r | f ∈ mod(r)} is the set of bug reports such that

1Although the original AmaLgam+ [7] did not square the similarity, this
paper adopts the squared version because Rath et al. [10] reported its
superiority.

they had required to fix f in the past. Intuitively, the bug report
similarity is the source of the suspicious score and is equally
distributed to the corresponding files.

C. Metric(3): Structured Information Retrieval-Based Metric

There have been studies that link a bug report to a file
by focusing on their contents. BLUiR [17], one of the most
promising methods, performs a structured information retrieval
for bug localization. It quantifies the suspicious score of a file
using the textual similarity between the components of the
bug report and the file. We describe its computation procedure
below. Suppose we have a new bug report rnew and a file f .

1) Component extraction from bug report: Extract “sum-
mary” part and “description” one from rnew separately.
Let r1 and r2 be the summary part and the description
one of rnew, respectively.

2) Component extraction from source file: Pick out the class
names, the method names, the variable names, and the
comments appearing in f . Let f1, f2, f3, and f4 be these
components of the file, respectively.

3) Vectorization of components: Vectorize each of the above
six components (r1, r2, f1, f2, f3, and f4) by the same
way as the above metric described in Sect. II-B.

4) Suspicious score computation: Compute the cosine sim-
ilarity for each pair of a bug report’s component and a
file’s one, and obtain the suspicious score of f :

score3(f) =

2∑
i=1

4∑
j=1

sim(ri, fj) . (3)

D. Metric(4): Stack Trace-Based Metric

Schroter et al. [18] reported an empirical study that proved
the worth of stack trace in locating the corresponding bugs.
Therefore, when a bug report includes the stack trace, it
is beneficial to pay attention to it. We describe the metric
for quantifying the suspiciousness of a file below. Although
the following description assumes the Java environment, we
can define similar metrics for other languages without losing
generality if their stack traces provide the file names.

1) Extraction of file names from bug report: Suppose the
new bug report rnew includes a stack trace. Extract all
file names appearing in it.

2) Ranking of source files: Rank the extracted files in
descending order of appearance. The more times the file
appears in the stack trace, the higher rank it gets.

3) Suspicious score computation: Compute the suspicious
score of a file f as:

score4(f) =


1

rank(f, rnew)
, (f appears in rnew),

0, (otherwise),
(4)

where rank(f, rnew) is the rank of file f , obtained in
the above process.



E. Metric(5): Bug Reporter-Based Metric

A user sometimes pays attention to certain functionality.
When the same user reported two or more bug reports, these
bugs may be related to each other. They may be caused by the
same file or the ones in the same package. We can compute the
suspicious score of a file using the above tendency as follows.

1) Search of related bug reports: Suppose we have a new
bug report rnew that is submitted by a user. Search all
already-resolved bug reports that were also submitted by
the same user; Let Rsu be the set of these bug reports.

2) Detection of related packages: For each related bug
report r ∈ Rsu, pick all files that were fixed to resolve
r, and let Pa(r) be the set of the packages to which
these files belong. Then, let Pall be the set of the related
packages: Pall =

∪
r∈Rsu

Pa(r) .
3) Suspicious score computation: Compute the suspicious

score of a file f as follows.

score5(f) =

{
1, (f is in Pall),

0, (otherwise) .
(5)

F. Metrics Integration in AmaLgam+

AmaLgam+ integrates the above five metrics to evaluate the
suspiciousness of a file f . It sorts all files in descending order
of the integrated score and suggests the highly-ranked files as
the ones most likely buggy. The integrated suspicious score of
a file f , susp(f), is defined as follows [7].

susp(f) =


5∑

i=1

wi · scorei(f), (score2(f) > 0

∨ score3(f) > 0)

0, (otherwise) ,

(6)

where wi is the weight coefficient representing the degree to
which scorei contributes to f ’s combined suspiciousness (for
i = 1, . . . , 5); These weights have to be tuned well.

AmaLgam+ uses the genetic algorithm (GA) [19] to tune the
above weights w1–w5. GA is one of the most useful algorithms
to decide parameters to maximize the objective function. We
can perform it using the GA package2 of R.

GA needs the objective function that evaluates bug local-
ization’s effectiveness to explore the optimal or suboptimal
solution. AmaLgam+ considers the following two criteria to
organize the objective function.

• Mean Average Precision (MAP): For a new bug report,
suppose we have n files ranked by the bug localiza-
tion method, and m files are truly buggy. Let P(k) be
the precision at the top k files, i.e., P(k) = (num-
ber of buggy files ranked in top k)/k. The average
precision, AP, is defined as follows.

AP =
1

m

n∑
k=1

P(k) · I(k) ,

where I(k) = 1 when the file ranked at k is buggy;
otherwise, I(k) = 0.

2https://cran.r-project.org/web/packages/GA/

Notice that different bug reports may have different AP
values. The mean AP (MAP) is obtained as:

MAP =
1

N

N∑
i=1

APi , (7)

where N is the number of bug reports, and APi is AP
value of the i-th bug report (for i = 1, . . . , N ).

• Mean Reciprocal Rank (MRR): MRR focuses on the
highest rank among the buggy files and uses the recipro-
cal rank (MR) as an evaluation value. The higher rank a
buggy file places, the higher the evaluation value is. The
mean MR (MRR) is obtained as follows.

MRR =
1

N

N∑
i=1

1

rank i
, (8)

where rank i is the highest rank of buggy file for the i-th
bug report (for i = 1, . . . , N ).

Then, AmaLgam+ uses the following objective function:

ObjFunction = eMAP+MRR . (9)

III. PROPOSED METHOD

AmaLgam+ uses the five metrics and integrates them using
GA. Although AmaLgam+ performs well, it has a challenge
regarding the computational cost. When we turned the weight
coefficients of the metrics using an average personal computer,
it took over three hours in the worst case. Such a long time
motivated us to propose another way of integrating metrics.

All of the above five metrics evaluate the suspicious degree
to which a file is buggy. Moreover, the higher value each of the
metrics has, the more suspicious the file is. Now we express
a file as the five-dimensional vector whose elements are the
corresponding metric values, x = (score1, . . . , score5)

T , and
consider its distance from the origin in the vector space.
Intuitively, the farther file is more suspicious. That is, the
distance can be yet another integrated suspicious score.

Although Euclidean distance is a common distance metric,
it is not reasonable in our scenario because it does not consider
the data dispersion and the correlations. Thus, we propose to
use Mahalanobis distance [13] in this paper. To give an intu-
itive interpretation of it, let us consider a scholar data x whose
mean value is 0, and the standard deviation is σ. Mahalanobis
distance between x and 0 is

√
(x− 0)2/σ. That is the distance

normalized by the data dispersion. By generalizing this notion
to multi-dimensional vectors, Mahalanobis distance between
x and 0, d(x), is computed as:

d(x) =
√
xTS−1x , (10)

where S is the variance-covariance matrix, and S−1 is the
inverse matrix of S.

The computation of Mahalanobis distance is just a matrix
calculation3 and does not require any parameter tuning. Hence,
we can perform it much faster than GA. Suppose the proposed

3We can perform it using stats package of R.



(Mahalanobis distance-based) method can perform at almost
the same level of accuracy as GA-based AmaLgam+. In that
case, it can play a lightweight alternative to AmaLgam+ and
be a solution to its challenge regarding the computational cost.

IV. EMPIRICAL STUDY

In this section, we report the empirical study to examine our
proposal. We describe the aim and the dataset in Sect. IV-A
and explain the procedure in Sect. IV-B. Then, we present the
results and our discussions in Sect. IV-C. Finally, we describe
the threats to validity in Sect. IV-D.

A. Aim and Dataset

As we mentioned above, AmaLgam+ has a challenge re-
garding the computational cost, and we have proposed the
Mahalanobis distance-based method to overcome the problem.
In this study, we perform the bug localization by AmaLgam+
and the proposed method, comparing the results in terms of (1)
accuracy and (2) computation time. If the proposed method can
perform much faster than AmaLgam+ while having the bug
localization accuracy at almost the same level as AmaLgam+,
the proposed method can be a useful alternative method.

We use a part of the datasets provided by Rath and Patrick4:
the bug reports (labeled as “bug” or “improvement”) submitted
to six open source software projects shown in Table I. Al-
though the datasets do not include the source files, we obtained
them from their repositories available at GitHub.

We carried out all of our data processing and computations
on the personal computer whose CPU is Intel Core i5-9400,
memory size is 32GB, and OS is Windows 10.

B. Procedure

We performed the following procedure for each project.
1) Metrics computation: For each bug report and source

file, we compute the values of the above five metrics.
2) Suspicious score computation: We combine the metric

values to get the integrated suspicious score for each file
by AmaLgam+ and the proposed method independently.
We also measure the elapsed time to finish all computa-
tions. In AmaLgam+, to tune the weight coefficients, we
randomly sampled 5% of the bug reports and run GA
with the parameters5 maxiter=200, popsize=50,

TABLE I
DATASETS USED IN THIS STUDY

Project Number of reports KLOC Data collection period
Railo 529 241 2008-11 — 2013-12
Izpack 402 89 2009-01 — 2016-01
Log4j2 676 72 2008-12 — 2017-04
Weld 657 63 2009-01 — 2017-03

Hornetq 481 171 2006-05 — 2015-06
Seam2 784 106 2005-08 — 2014-03

4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/
PDDZ4Q

5The values of maxiter and popsize are the same as the ones used in
[7]; We set the value of run based on the tutorial of the package.

and run=100. We include the parameter tuning time
in the computation time mentioned above.

3) Accuracy evaluation: For each bug report, we evaluate
the bug localization accuracy by AmaLgam+ and the
proposed method, respectively. We adopt Top@k mea-
sures [20] and use Top1, Top5, and Top10 accuracy.

C. Results and Discussions

Table II shows the bug localization accuracy. Although the
proposed method does not outperform AmaLgam+, it shows
almost the same accuracy: While AmaLgam+ outperformed
the proposed method in 12 cases (e.g., Top1 in Log4j2), the
proposed method did in 5 cases (e.g., Top5 in Ralio); the
remaining one case (Top10 in Hornetq) was a tie.

Table III presents the comparison of the computation times
between AmaLgam+ and the proposed method. While AmaL-
gam+ took 12, 782 seconds (about 3.55 hours) in the worst
case (Ralio project), the proposed finished within 246 seconds
(about 4 minutes). That is, the proposed method reduced
the computation time by about 98%. The average rate of
time reduction is about 97%. Hence, the proposed method
successfully performs the bug localization much faster than
AmaLgam+ while not seriously losing the accuracy.

AmaLgam+ tunes the weight coefficients of the five suspi-
cious metric values to maximize the predefined objective func-
tion. On the other hand, the proposed method simply computes
the distance from the origin as the combined suspicious score
while considering the metric data dispersion and the correla-
tions between metrics. In this sense, GA-based AmaLgam+ is
a supervised learning method, and the Mahalanobis distance-
based method is an unsupervised learning one. Because the
proposed method does not perform any parameter tuning, it
has a risk of producing a useless integrated score if one of the
metrics does not work well for locating bugs. In other words,
GA can minimize such a risk by giving a smaller weight to
the useless metric through tuning. Such a difference might

TABLE II
TOP1, TOP5, AND TOP10 ACCURACY (%)

Project AmaLgam+ Proposed method
Top1 Top5 Top10 Top1 Top5 Top10

Railo 17.61 35.98 45.45 16.48 39.39 48.67
Izpack 29.03 52.85 61.54 24.07 48.64 59.31
Log4j2 30.18 56.95 65.38 27.37 58.28 67.90
Weld 16.44 35.46 44.44 16.74 31.51 40.79

Hornetq 18.26 33.82 36.93 15.15 31.95 36.93
Seam2 12.75 26.10 32.84 10.54 22.06 27.21

TABLE III
COMPARISON OF COMPUTING TIMES

Project elapsed time (sec) (a)−(b)
(a)(a) AmaLgam+ 　 (b) proposed method

Railo 12, 782 246 98.08%
Izpack 1, 090 24 97.80%
Log4j2 2, 709 68 97.49%
Weld 1, 024 31 96.97%

Hornetq 920 36 96.09%
Seam2 1, 724 109 93.68%



cause the loss of bug localization accuracy shown in Table
II. Nonetheless, the empirical results did not show severe
deterioration in accuracy. That is, it successfully maintains
almost the same accuracy and reduces the computation time
dramatically (reduced by about 97% on average).

We used the notion of Mahalanobis distance to integrate
different metrics for bug localization reasonably and over-
comes AmaLgam+’s challenge regarding computational cost.
However, our method is not only for AmaLgam+; i.e., it can
be applied to other bug localization methods. There have been
various bug localization methods using IR, spectrum analysis,
or program analysis techniques [4], [21]–[27]. Because many
methods utilize two or more metrics for bug localization, we
can apply our integration method to those bug localization
methods without any changes. A further comparative study is
our significant future work.

D. Threats to Validity

Construct validity: The parameter setting of GA would
affect the computational results. If we run the GA computation
with a different parameter, we may obtain a different result.
Although we used the same parameter as the previous work
[7], it would be better to tune the settings as well.

External validity: Because we used only six Java projects,
the proposed method may not work well for another project.
To mitigate this threat, we would also need to perform a further
study using various projects written in other than Java.

V. CONCLUSION AND FUTURE WORK

AmaLgam+ is a promising bug localization method, which
combines five metrics into a suspicious score of a source
file. However, because AmaLgam+ uses GA to decide the
weight coefficients of metrics, it tends to need a long time for
tuning the weights. To reasonably integrate these metrics with
a low cost, we proposed a Mahalanobis distance-based method.
Then, we empirically proved that the proposed method could
reduce the computation time by about 97% on average without
severe loss of the bug localization accuracy. Thus, it would be
a lightweight alternative to AmaLgam+.

Our future work is to enhance the accuracy of the proposed
method, i.e., narrow the accuracy gap with AmaLgam+. We
plan to further study the contribution of each metric and
incorporate the study results into the computation of Maha-
lanobis distance toward a better and fast bug localization. A
further comparative study using various methods other than
AmaLgam+ is also our significant future work.
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