
Empirical Study of Change-Prone and Fault-Prone Method 

Prediction Focusing on Comment Ownership 

 

Aji Ery Burhandenny, Takashi Nakano 

Graduate School of Science and Engineering 

Ehime University 

Matsuyama, Ehime, Japan 790–8577 

Email: {aji, nakano}@se.cite.ehime-u.ac.jp 

 

Hirohisa Aman and Minoru Kawahara 

Center for Information Technlogy 

Ehime University 

Matsuyama, Ehime, Japan 790–8577 

Email: {aman, kawahara}@ehime-u.ac.jp 

 

ABSTRACT  

The existence of comments in method bodies is a double-edged sword, at one side 

it helps code reviewers to comprehend complex code while at the same time it could 

reflect the lack of confidence by the programmer concerning the clearness of their code. 

While comments can be useful clues to find problematic code, the effects may be vary 

from person to person. This paper proposes a novel metric “Ownership- Considered 

Comment Rate (OCCR)” that is enhanced from conventional comment rate by 

considering the difference among developers. The empirical study collects 75,204 Java 

methods from five popular open source software to understand the relationship between 

the developer and their code and its contribution to change-prone and/or fault-prone 

method prediction. The results confirmed the significant influence of OCCR for 

predicting changes and faults in methods. 
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INTRODUCTION 

The vast evolution in open source software (OSS) projects enforces the development 

team to be efficient in managing code evolutions and fault-related problems especially 

in code review phase. In order to shorten time in understanding source code, 

programmers often rely on the documentation provided with the code (Steidl, Hummel, 

& Juergens, 2013). One of the most fundamental documents is a comment statement 

written in a source file. Comments have been widely known as useful and important 

artifacts familiar to programmers (Souza, Anquetil, & Oliviera, 2005). While 

comments have no impact on the software systems’ behavior and performance at all, 

they play a significant role in the program comprehension. 

Aside from automatically generated comments, naturally written comments are 

humanly readable, descriptive and often express programmer’s thought. These 

characteristics alongside programmer’s manner become an interesting subject for study 

of software engineering due to the programmer-specific characteristic can be a 

potential factor either to increase or to reduce the chance of finding latent bugs in their 



source code. This phenomenon ultimately triggering the “clean code practice” among 

the programmers exclusively when deciding whether to conduct code refactoring to 

their source code (Martin, 2008). Indeed, carefully-written (detailed) comments are 

said to be “deodorant” to mask code smell (Fowler, 1999); some empirical studies 

reported that well-commented programs tend to be more fault-prone in popular OSS 

products (Aman, Amasaki, Sasaki, & Kawahara, 2015; Aman et al., 2015).  

While the previous work (Aman et al., 2015) empirically showed the value to focus 

comments in order to predict fault-prone and/or change-prone programs, they missed 

diversity of commenting, i.e., “who wrote those comments.” One programmer may 

to write many comments with their code, but another programmer may prefer the code 

having no or less comments. Such differences in commenting preference would have 

significant impact on the change-prone and fault-prone program prediction. The key 

contribution of this paper is to empirically analyze the impact of considering 

ownership” toward a better performance of the change and/or fault prediction. We 

introduce a novel software quality prediction method based on the abnormal level of 

individual developer’s comments. Moreover, we evaluate our proposed method with 

the primitive metrics that have been commonly used for the prediction model. 

The remainder of the paper is organized as follows: Section 2 presents our research 

motivation and research question with empirical background supporting our work in 

this paper. Then, Sect.3 conducts an empirical analysis with five popular open source 

software projects and discusses the results. Section 4 describes previous work related 

to this paper. Finally, Sect.5 gives our conclusions and future work. 

FAULT PREDICTION FOCUSING ON COMMENTS 

 

Comments and Fault-proneness 

Comments are useful artifacts to enhance the readability of the code as mentioned in 

Sect.1. However, they are sometimes used to compensate the lack of clearness in 

complicated code (Buse & Weiner, 2008). That is to say, comments have an aspect 

like a double-edged sword, and they are not always recommended to be written a lot. 

The code refactoring practice also warns detailed comments as deodorant for masking 

code smell (Fowler, 1999). 

In our latest work (Aman et al., 2015), we had managed to prove that comment 

existence in Java method can significantly differ faulty methods and non-faulty ones. 

Nevertheless, a limitation of our approach was that we did not take into account the 

human factor such as the difference in each developer. For example, let us consider 

two developers A and B: developer A prefers to describe many comments in their 

code, and developer B does not like to write comments. Suppose developer A’s 

average of comment rate (lines of comments per lines of code) and B’s one are 0:2 

and 0:01, respectively. 

Now, if both of them developed programs with comment rate 0:2, then A’s program 

looks at a normal level of commenting but B’s program seems to be at a significantly 

abnormal level. Therefore, we can suspicious that the B’s program may be something 

wrong, and the development manager should examine the reason why developer B 



wrote such many comments this time. Such differences in commenting preference 

among developers may have a serious impact on fault-prone and/or change-prone 

method prediction studied in the previous work (Aman et al., 2015). This concern is 

our research motivation in this paper. 

Research Question 

Our main research question is: “Is the difference in comment rates among developers 

valuable to focus for predicting problematic code?” 

Our primary goal is to study whether taking into account the average amount and 

variation of comment description per developer will effectively influence early 

prediction of code-change and bug fix. In order to answer the research question, we 

examine the predictive accuracy of bug fixes and code modifications with and without 

considering the abnormality comment rates by developers in the following section. 

EMPIRICAL WORK 

This section elaborates our experiments and analytical results on data sets from 

popular OSS projects to explore our research question regarding the value of 

developer’s diversity for early prediction of code-change and bugs fix. In order to 

quantitatively measure the relationship between per-developer in comment rate and its 

worthiness to predict prospective code changes and bug fixes in Java methods, we 

perform data collection for the comment rate of each developer, and statistically 

analyze the trends. 

We intended to choose the OSS systems for analysis with the following criteria: 1) To 

eliminate commonalities that might be valid only for particular OSS systems, the 

chosen products should be varied in their size and domains. 2) The selected OSS 

should have similar implementation language, therefore the differences between 

languages would not affect the results. For our study purpose, Java was the first 

choice due its compatibility with our mining tools. 3) Each project should be 

relatively popular confirmed by having a reasonable number of releases and currently 

active up to nowadays. 4) For each project, all the source code and relevant 

information concerning change history and their logs, and other feature requests 

should be available in their repository. 

Table 1. Surveyed Software 

Software Investigation Period #Source Files 

Free Mind Feb. 2011 – Sept.2015 507 

Squirrel SQL Client June 2001 – Sept.2015 3,855 

Hibernate June 2007 – Sept.2015 3,861 

JabRef Oct. 2003 – Sept.2015 585 

eXo Platform Mar.2007 – Sept.2015 172 

Total  8,980 

Based on those criteria, we selected five prominent OSS products which all are 

managed using Git (see Table 1). The following metrics are harvested from the 

surveyed products: lines of comments in a method body (inner comments;    ) that 



each developer has created (first edition), lines of comments followed by a method 

declaration (documentation comments;    ), lines of code (   ), cyclomatic 

complexity (  ), and frequency of code changes and bug fixes occurred in the 

method after their first release. 

Data Collection 

To perform our empirical analysis for the above research question, we conducted a 

data collection in the following procedure: 

1. In order to perform our analysis efficiently, we made a local copy (clone) of the 

targeted repository. 

2. By utilizing JavaMethodExtractor
1
 we perform a syntax analysis to extract 

methods’ bodies from the source files. 

3. Then we examine the change history of each method using diff utility
2
. We track 

the frequency of changes and bug fixes up to the latest version according to the 

information provided in their commitment log. By this way, we are able to 

distinguish which method has been changed during each commitment. Similar to 

the previous work, we identify bug fixes, when bug-fix-related keywords or bug 

IDs appeared in commitment log (Sliwerski, Zimmermann, & Zeller, 2005). 

4. Next, we decide the owner of each method: we define a method’s owner is who 

created the method.  Method owners are identified by their email addresses 

appeared in the commitment logs. 

5. Finally, we measure the initial version of each method by using the above metrics 

including    ,    ,     and   . 

Table 2 shows the number of methods and the number of developers who are the 

owners of the initial version of methods. 

Table 2. Number of Methods and Number of Developers Who Created Initial 

Version of Methods 

Software #Developers #Methods 

Free Mind 3 6,975 

Squirrel SQL Client 10 29,309 

Hibernate 91 31,824 

JabRef 10 5,606 

eXo Platform 36 1,490 

Total 150 75,204 

Preliminary Study: Comment Ownership 

Prior to analyze the comments rate, in order to justify whether to consider the 

differences in the developer or not, we need to confirmed that the comment rates vary 

among developers for each tested product. We check the comment rates to     in 

each developer for both documentation and inner comment rates (        and 

       ) using analysis of variance (ANOVA), and confirmed the trend statistically. 

                                                 
1
 http://se.cite.ehime-u.ac.jp/tool/ 

2
 https://www.gnu.org/software/diffutils/ 



Table 3. ANOVA Results (Documentation Comment Rate) 

Software Degree of Freedom p-value 

Free Mind 2 0.008 

Squirrel SQL Client 9          

Hibernate 90          

JabRef 9 0.352 

eXo Platform 35 0.049 

 

Table 4. ANOVA Results (Inner Comment Rate) 

Software Degree of Freedom p-value 

Free Mind 2 0.016 

Squirrel SQL Client 9          

Hibernate 90             

JabRef 9 0.573 

eXo Platform 35 0.001 

Tables 3 and 4 shows the ANOVA results for documentation comment and the inner 

comment respectively. Significant developer differences in both documentation and 

inner comment rate have been confirmed, except for JabRef. JabRef is the only 

product that has inner comment rate’s pvalue exceeded a significance level (  ); 

JabRef seems not to be a worthy subject in the following analysis, so we will analyze 

the remaining four OSS products. We can say that the difference of developer has an 

impact on the amount of comments written on inside and outside of a method (inner 

comments and documentation comments). 

Analysis (1) Ownership-Considered Comment Rate (    ) VS Conventional 

Comment Rate 

We have confirmed the differences of comment rates among developers in tested 

products. In the rest of this section, we assess the worth of comment rates for 

predicting change-prone and/or fault-prone methods. We start our analysis by 

comparing two types of comment rates: 

1. Conventional comment rates (the lines of comments divided by the lines of code), 

2. Proposed comment rates that take into account the difference among developers. 

3. We call the first type as Conventional Comment Rates (   ) and the later one 

“Ownership-Considered Comment Rate (    ).” 

First, we calculate the mean and standard deviation of the comment rate for each 

developer. Based on this measurement, we evaluate the amount of comments of each 

method as follows: 

           to be the inner comment rate of method  , i.e.,                of 

 , and method  ’s owner is developer  . then we define          by the 

following equation: 

          
         

  

 



Where    and    are the mean of ’s comment rates and the standard deviation of 

 ’s ones, respectively. When           is a positive value, it indicates the comment 

rate is greater than the developer ’s average (  ). Similarly, when its value is 

negative, it means that the comment rate is less than their average. We want to 

normalize the variation by dividing the standard deviation of d’s comment rate (  ). 

Then, we consider            to be an index of abnormality with regard to      by 

the developer  . In this paper, we define              as a novel metric, 

Ownership-Considered Inner Comment Rate (     ): 

                     

We can define a similar metric for documentation comment 

rate—Ownership-Considered Documentation Comment Rate (      ) — by 

replacing “inner comments” with “documentation comments” in the above definition. 

From hereafter, we refer both       and       as “Ownership-Considered 

Comment Rate (    ) for the sake of convenient.  

On the other hand, we can consider another type of           with using the mean 

of all developer’s comment rates (    ) and the standard deviation of them (    ), as 

follows: 

                
           

    

 

While             also denotes an abnormality of comment rate for method m, it 

does not take into account its ownership. We consider             to be a 

conventional way to evaluate the comment rate, and compare it with our proposed 

    . 

Figure 1 compares the powers of change-prone method predictions by      and the 

conventional score. Its horizontal axis corresponds to the methods in the decreasing 

order of comment rate’s abnormality, and the vertical axis signifies the cumulative 

number of code-change events occurred in the methods. That is to say, an earlier 

growth of a curve means a better performance in predicting change-prone methods. In 

the figure, solid red lines correspond to the results of      and dashed blue lines 

signifies the results by using the conventional scores. Similarly, Fig.2 compares the 

power of fault-prone method predictions by      and the power of that by the 

conventional score.  

In order to evaluate the effect to take into account the differences in comment rate 

among developers, we introduce the following improvement rate   : 

  
     

  

 

 



    

(a) Doc Comment 

(FreeMind) 

(b) Doc Comment 

(SQuirrel SQL 

Client) 

(c) Doc Comment 

(Hibernate) 

(d) Doc Comment 

(Platform) 

    

(e) Inner Comment 

(FreeMind) 

(f) Inner Comment 

(SQuirrel SQL 

Client) 

(g) Inner Comment 

(Hibernate) 

(h) Inner Comment 

(Platform) 

Figure 1. Cumulative number of modifications occurred at methods that are sorted in the 

decreasing order of their comment rates’ abnormality. 

    

(a) Doc Comment 

(FreeMind) 

(b) Doc Comment 

(SQuirrel SQL 

Client) 

(c) Doc Comment 

(Hibernate) 

(d) Doc Comment 

(Platform) 

    

(e) cxcxInner 

Comment 

(FreeMind) 

(f) Inner Comment 

(SQuirrel SQL 

Client) 

(g) Inner Comment 

(Hibernate) 

(h) Inner Comment 

(Platform) 

Figure 2. Cumulative number of bug fixes occurred at methods that are sorted in the 

decreasing order of their comment rates’ abnormality. 



Where    represents the area under the curve of      in Figs. 1 and 2, and    

signifies the area under the curve using the conventional score in those figures. Since 

a larger area means a better performance in predicting change-prone or fault-prone 

methods, indexes the improvement of their prediction power by using     , i.e., 

taking into account the difference in comment rate among developers. 

 

Table 5. Improvement Rate with regard to Documentation Comments. 

Software #Modifications #Bug Fixes 

Free Mind 0.237 0.352 

Squirrel SQL Client -0.074 -0.074 

Hibernate 0.057 0.046 

eXo Platform -0.199 -0.300 

Average 0.004 0.003 

 

Table 6. Improvement Rate with regard to Inner Comments. 

Software #Modifications #Bug Fixes 

Free Mind 0.318 0.488 

Squirrel SQL Client 0.320 0.296 

Hibernate 0.026 0.017 

eXo Platform -0.009 -0.070 

Average 0.131 0.146 

Tables 5 and 6 describe the improvement rates with regard to the documentation 

comments and inner comments, respectively. Table 5 shows that      is not 

resourceful for documentation comment (improvement rate     on average). In 

contrast, Table 6 justifies a part of our research question that taking into account the 

differences in developer’s comment rate can be useful to an early prediction of 

problematic code—change-prone and fault-prone methods: their improvement rates 

are in     –     for both change-prone method prediction and fault-prone method 

prediction. It seems that the differences in developer’s inner comment rate have a 

promising effect on change-prone and/or fault-prone method prediction rather than the 

documentation comment rates. Therefore, we will examine the change-prone and 

fault-prone prediction powers of ownership-considered inner comment rate by 

comparing with the conventional metrics, lines of code (   ) and cyclomatic 

complexity (  ) in Sect. 3.4 and Sect. 3.5, respectively. 

Analysis (2) OCCR vs Lines of Code (LOC) 

In previous analysis, we have confirmed the helpfulness of       (     for inner 

comments) for early detection of code changes and bug fixes in Java methods. In this 

analysis, we compare       with    , which is a popular metric commonly used 

for predicting fault-prone programs. Our procedure of the comparative study is similar 

to Analysis (1) in Sect.3.3: we cumulate the numbers of modifications occurred at 

methods that are sorted in the decreasing order of      , and that are sorted in the 

decreasing order of    , respectively. We also compute the cumulative numbers of 

bug-fixes occurred at methods in those orders. 



    

(a) #Modifications 

(FreeMind) 

(b) #Modifications 

(SQuirrel SQL 

Client) 

(c) #Modifications 

 (Hibernate) 

(d) #Modifications 

 (Platform) 

    

(e) #Bug Fixes 

(FreeMind) 

(f) #Bug Fixes 

 (SQuirrel SQL 

Client) 

(g) #Bug Fixes 

 (Hibernate) 

(h) #Bug Fixes 

 (Platform) 

Figure 3. Cumulative numbers of modifications and bug fixes occurred at methods that are 

sorted in the decreasing order of their comment rates abnormality and in the decreasing 

order of LOC. 

Figure 3 shows the curves of cumulative numbers. In the figure, solid red lines 

correspond to the results of       and dashed green lines signifies the results of 

   . Table 7 shows the improvement rates defined in Eq.(4) where a1 and a0 are the 

area under the curve of       and that of    , respectively.  

From Table 7, we can say that       is at almost the same or better performance 

than     in predicting change-prone methods and fault-prone ones:       

improves the prediction power by      and      on average compared to     

for change-prone method prediction and fault-prone method prediction, respectively. 

FreeMind showed the best performance with      , which improves around     

for predicting modification occurrences and nearly     for predicting bug fixes 

occurred in the methods. While the bug fix prediction in SQuirreL SQL Client and the 

code modification prediction in eXo Platform show negative improvement rates, both 

of them are at small levels (    and      ). Therefore, for most of projects, 

      has a usefulness at the same with or better than     in predicting 

change-prone methods and fault-prone methods. 

 

 



Table 7. Improvement Rates:       VS    . 

Software #Modifications #Bug Fixes 

Free Mind 0.192 0.391 

Squirrel SQL Client 0.003 0.251 

Hibernate 0.060 0.000 

eXo Platform -0.001 -0.044 

Average 0.027 0.147 

 

Analysis (3)      vs Cyclomatic Complexity (  ) 

Next, we conduct another comparative study with using cyclomatic complexity (  ). 

   has also been widely known as a useful metric for predicting fault-prone 

programs. Our analysis procedure is similar to the one described in Sect.3.4, where 

we replace “   ” with “  .” Due to limitations of space, we omit a figure of 

cumulative numbers of modifications and bug-fixes occurred at methods in the 

decreasing order of metric values like Fig.3, and we show only a table of 

improvement rates (see Table 8). 

Table 8. Improvement Rates:       VS    

Software #Modifications #Bug Fixes 

Free Mind 0.259 0.391 

Squirrel SQL Client 0.270 0.251 

Hibernate 0.012 0.000 

eXo Platform -0.001 -0.044 

Average 0.131 0.147 

As shown in Table 8,       seems to be more useful than    in predicting 

change-prone methods and faultprone ones: the improvement rates are about     

and     on average for code modification prediction and bug fix prediction, 

respectively. While eXo Platform showed small disimprovements (       

and     ) similar to Analysis (2) (see Table 7), the remaining products showed that 

      is at almost the same level with    or better than    in the predictions. 

Especially, FreeMind and SQuirreL SQL Client showed over     improvements. 

Therefore, we can say that       can be a more promising metric than Cyclomatic 

Complexity. 

Threats to Validity 

This empirical work used five popular OSS products from different domains and in 

different size for a generality of our empirical results. However, we had to limit our 

subjects to Java products because of our data collection tool. While the language 

limitation may be our threats to validity, the fundamental concept of commenting 

code is common to almost all modern programming languages, so our results would 

not lose its generality for other languages. 

If there was a specific coding convention in the surveyed OSS projects and they 

controlled developers on how to write comments, such a control can be our threats to 



validity. JabRef did not show statistical difference in comment rate among developers, 

so it might be controlled by a certain coding rule. However, we excluded JabRef from 

our subjects in the main analyses (1)–(3), and the remaining products showed 

diversities in comment rates among developers. Therefore, we can say that the 

influence of coding convention would not be concern in our empirical results. 

 

RELATED WORK 

Recently, there are several studies that investigate the relationship between developer 

activities to the fault proneness (Robbes & Rothlisberger, 2013; Rahman & Devanbu, 

2011). However, all of their work do not consider comment as one of important 

factors in predicting fault-prone programs. Aman et al. (2015) stressed on the 

importance of comments and their relationship to the fault-proneness. They conducted 

empirical analyses to show the worth to focus on Lines of Comments (   ) as a 

useful metric along with     and    in analyzing fault-proneness of Java methods. 

While their work is our previous work, they missed to take into account the diversity 

in commenting manners among developers, so an empirical analysis using 

“ownership-considered comment rate (    )” is our key contribution in this paper. 

CONCLUSION AND FUTURE WORK 

In this paper, we aimed to investigate the developer differences in commenting their 

code, and the influence of such a diversity to the accuracy of change-prone and/or 

fault-prone method prediction. In our first analysis, we had confirmed the efficiency 

of our metric “Ownership-Considered Comment Rate (     )” in detecting 

change-prone and fault (bug)-prone methods compare to the conventional comment 

rate. Our second and third analyses revealed that       (     for inner comments) 

can be useful metric in predicting change-prone methods and fault-prone methods, 

and its usefulness is at almost the same level with or better than conventional popular 

metrics,     (Lines of Code) and    (Cyclomatic Complexity). Therefore, this 

paper successfully showed the importance of taking into account the developers’ 

differences in commenting their code for more accurate change-prone and/or 

fault-prone method prediction. 

Our future work includes:  

1. Examining the evolution of comments by developers through the software 

development and maintenance; 

2. Analyzing the contents of comments with the natural language processing 

methods toward a better understanding the relationship between a developer and 

their comments. 
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