
Empirical Study of Change-Prone and Fault-Prone Method

Prediction Focusing on Comment Ownership

Aji Ery Burhandenny, Takashi Nakano

Graduate School of Science and Engineering

Ehime University

Matsuyama, Ehime, Japan 790–8577

Email: {aji, nakano}@se.cite.ehime-u.ac.jp

Hirohisa Aman and Minoru Kawahara

Center for Information Technlogy

Ehime University

Matsuyama, Ehime, Japan 790–8577

Email: {aman, kawahara}@ehime-u.ac.jp

ABSTRACT

The existence of comments in method bodies is a double-edged sword, at one side

it helps code reviewers to comprehend complex code while at the same time it could

reflect the lack of confidence by the programmer concerning the clearness of their code.

While comments can be useful clues to find problematic code, the effects may be vary

from person to person. This paper proposes a novel metric “Ownership- Considered

Comment Rate (OCCR)” that is enhanced from conventional comment rate by

considering the difference among developers. The empirical study collects 75,204 Java

methods from five popular open source software to understand the relationship between

the developer and their code and its contribution to change-prone and/or fault-prone

method prediction. The results confirmed the significant influence of OCCR for

predicting changes and faults in methods.

Keyword: comment; developer; fault-prone; open source software

INTRODUCTION

The vast evolution in open source software (OSS) projects enforces the development

team to be efficient in managing code evolutions and fault-related problems especially

in code review phase. In order to shorten time in understanding source code,

programmers often rely on the documentation provided with the code (Steidl, Hummel,

& Juergens, 2013). One of the most fundamental documents is a comment statement

written in a source file. Comments have been widely known as useful and important

artifacts familiar to programmers (Souza, Anquetil, & Oliviera, 2005). While

comments have no impact on the software systems’ behavior and performance at all,

they play a significant role in the program comprehension.

Aside from automatically generated comments, naturally written comments are

humanly readable, descriptive and often express programmer’s thought. These

characteristics alongside programmer’s manner become an interesting subject for study

of software engineering due to the programmer-specific characteristic can be a

potential factor either to increase or to reduce the chance of finding latent bugs in their

source code. This phenomenon ultimately triggering the “clean code practice” among

the programmers exclusively when deciding whether to conduct code refactoring to

their source code (Martin, 2008). Indeed, carefully-written (detailed) comments are

said to be “deodorant” to mask code smell (Fowler, 1999); some empirical studies

reported that well-commented programs tend to be more fault-prone in popular OSS

products (Aman, Amasaki, Sasaki, & Kawahara, 2015; Aman et al., 2015).

While the previous work (Aman et al., 2015) empirically showed the value to focus

comments in order to predict fault-prone and/or change-prone programs, they missed

diversity of commenting, i.e., “who wrote those comments.” One programmer may

to write many comments with their code, but another programmer may prefer the code

having no or less comments. Such differences in commenting preference would have

significant impact on the change-prone and fault-prone program prediction. The key

contribution of this paper is to empirically analyze the impact of considering

ownership” toward a better performance of the change and/or fault prediction. We

introduce a novel software quality prediction method based on the abnormal level of

individual developer’s comments. Moreover, we evaluate our proposed method with

the primitive metrics that have been commonly used for the prediction model.

The remainder of the paper is organized as follows: Section 2 presents our research

motivation and research question with empirical background supporting our work in

this paper. Then, Sect.3 conducts an empirical analysis with five popular open source

software projects and discusses the results. Section 4 describes previous work related

to this paper. Finally, Sect.5 gives our conclusions and future work.

FAULT PREDICTION FOCUSING ON COMMENTS

Comments and Fault-proneness

Comments are useful artifacts to enhance the readability of the code as mentioned in

Sect.1. However, they are sometimes used to compensate the lack of clearness in

complicated code (Buse & Weiner, 2008). That is to say, comments have an aspect

like a double-edged sword, and they are not always recommended to be written a lot.

The code refactoring practice also warns detailed comments as deodorant for masking

code smell (Fowler, 1999).

In our latest work (Aman et al., 2015), we had managed to prove that comment

existence in Java method can significantly differ faulty methods and non-faulty ones.

Nevertheless, a limitation of our approach was that we did not take into account the

human factor such as the difference in each developer. For example, let us consider

two developers A and B: developer A prefers to describe many comments in their

code, and developer B does not like to write comments. Suppose developer A’s

average of comment rate (lines of comments per lines of code) and B’s one are 0:2

and 0:01, respectively.

Now, if both of them developed programs with comment rate 0:2, then A’s program

looks at a normal level of commenting but B’s program seems to be at a significantly

abnormal level. Therefore, we can suspicious that the B’s program may be something

wrong, and the development manager should examine the reason why developer B

wrote such many comments this time. Such differences in commenting preference

among developers may have a serious impact on fault-prone and/or change-prone

method prediction studied in the previous work (Aman et al., 2015). This concern is

our research motivation in this paper.

Research Question

Our main research question is: “Is the difference in comment rates among developers

valuable to focus for predicting problematic code?”

Our primary goal is to study whether taking into account the average amount and

variation of comment description per developer will effectively influence early

prediction of code-change and bug fix. In order to answer the research question, we

examine the predictive accuracy of bug fixes and code modifications with and without

considering the abnormality comment rates by developers in the following section.

EMPIRICAL WORK

This section elaborates our experiments and analytical results on data sets from

popular OSS projects to explore our research question regarding the value of

developer’s diversity for early prediction of code-change and bugs fix. In order to

quantitatively measure the relationship between per-developer in comment rate and its

worthiness to predict prospective code changes and bug fixes in Java methods, we

perform data collection for the comment rate of each developer, and statistically

analyze the trends.

We intended to choose the OSS systems for analysis with the following criteria: 1) To

eliminate commonalities that might be valid only for particular OSS systems, the

chosen products should be varied in their size and domains. 2) The selected OSS

should have similar implementation language, therefore the differences between

languages would not affect the results. For our study purpose, Java was the first

choice due its compatibility with our mining tools. 3) Each project should be

relatively popular confirmed by having a reasonable number of releases and currently

active up to nowadays. 4) For each project, all the source code and relevant

information concerning change history and their logs, and other feature requests

should be available in their repository.

Table 1. Surveyed Software

Software Investigation Period #Source Files

Free Mind Feb. 2011 – Sept.2015 507

Squirrel SQL Client June 2001 – Sept.2015 3,855

Hibernate June 2007 – Sept.2015 3,861

JabRef Oct. 2003 – Sept.2015 585

eXo Platform Mar.2007 – Sept.2015 172

Total 8,980

Based on those criteria, we selected five prominent OSS products which all are

managed using Git (see Table 1). The following metrics are harvested from the

surveyed products: lines of comments in a method body (inner comments;) that

each developer has created (first edition), lines of comments followed by a method

declaration (documentation comments;), lines of code (), cyclomatic

complexity (), and frequency of code changes and bug fixes occurred in the

method after their first release.

Data Collection

To perform our empirical analysis for the above research question, we conducted a

data collection in the following procedure:

1. In order to perform our analysis efficiently, we made a local copy (clone) of the

targeted repository.

2. By utilizing JavaMethodExtractor
1
 we perform a syntax analysis to extract

methods’ bodies from the source files.

3. Then we examine the change history of each method using diff utility
2
. We track

the frequency of changes and bug fixes up to the latest version according to the

information provided in their commitment log. By this way, we are able to

distinguish which method has been changed during each commitment. Similar to

the previous work, we identify bug fixes, when bug-fix-related keywords or bug

IDs appeared in commitment log (Sliwerski, Zimmermann, & Zeller, 2005).

4. Next, we decide the owner of each method: we define a method’s owner is who

created the method. Method owners are identified by their email addresses

appeared in the commitment logs.

5. Finally, we measure the initial version of each method by using the above metrics

including , , and .

Table 2 shows the number of methods and the number of developers who are the

owners of the initial version of methods.

Table 2. Number of Methods and Number of Developers Who Created Initial

Version of Methods

Software #Developers #Methods

Free Mind 3 6,975

Squirrel SQL Client 10 29,309

Hibernate 91 31,824

JabRef 10 5,606

eXo Platform 36 1,490

Total 150 75,204

Preliminary Study: Comment Ownership

Prior to analyze the comments rate, in order to justify whether to consider the

differences in the developer or not, we need to confirmed that the comment rates vary

among developers for each tested product. We check the comment rates to in

each developer for both documentation and inner comment rates (and

) using analysis of variance (ANOVA), and confirmed the trend statistically.

1
 http://se.cite.ehime-u.ac.jp/tool/

2
 https://www.gnu.org/software/diffutils/

Table 3. ANOVA Results (Documentation Comment Rate)

Software Degree of Freedom p-value

Free Mind 2 0.008

Squirrel SQL Client 9

Hibernate 90

JabRef 9 0.352

eXo Platform 35 0.049

Table 4. ANOVA Results (Inner Comment Rate)

Software Degree of Freedom p-value

Free Mind 2 0.016

Squirrel SQL Client 9

Hibernate 90

JabRef 9 0.573

eXo Platform 35 0.001

Tables 3 and 4 shows the ANOVA results for documentation comment and the inner

comment respectively. Significant developer differences in both documentation and

inner comment rate have been confirmed, except for JabRef. JabRef is the only

product that has inner comment rate’s pvalue exceeded a significance level ();

JabRef seems not to be a worthy subject in the following analysis, so we will analyze

the remaining four OSS products. We can say that the difference of developer has an

impact on the amount of comments written on inside and outside of a method (inner

comments and documentation comments).

Analysis (1) Ownership-Considered Comment Rate () VS Conventional

Comment Rate

We have confirmed the differences of comment rates among developers in tested

products. In the rest of this section, we assess the worth of comment rates for

predicting change-prone and/or fault-prone methods. We start our analysis by

comparing two types of comment rates:

1. Conventional comment rates (the lines of comments divided by the lines of code),

2. Proposed comment rates that take into account the difference among developers.

3. We call the first type as Conventional Comment Rates () and the later one

“Ownership-Considered Comment Rate ().”

First, we calculate the mean and standard deviation of the comment rate for each

developer. Based on this measurement, we evaluate the amount of comments of each

method as follows:

 to be the inner comment rate of method , i.e., of

 , and method ’s owner is developer . then we define by the

following equation:

Where and are the mean of ’s comment rates and the standard deviation of

 ’s ones, respectively. When is a positive value, it indicates the comment

rate is greater than the developer ’s average (). Similarly, when its value is

negative, it means that the comment rate is less than their average. We want to

normalize the variation by dividing the standard deviation of d’s comment rate ().

Then, we consider to be an index of abnormality with regard to by

the developer . In this paper, we define as a novel metric,

Ownership-Considered Inner Comment Rate ():

We can define a similar metric for documentation comment

rate—Ownership-Considered Documentation Comment Rate () — by

replacing “inner comments” with “documentation comments” in the above definition.

From hereafter, we refer both and as “Ownership-Considered

Comment Rate () for the sake of convenient.

On the other hand, we can consider another type of with using the mean

of all developer’s comment rates () and the standard deviation of them (), as

follows:

While also denotes an abnormality of comment rate for method m, it

does not take into account its ownership. We consider to be a

conventional way to evaluate the comment rate, and compare it with our proposed

 .

Figure 1 compares the powers of change-prone method predictions by and the

conventional score. Its horizontal axis corresponds to the methods in the decreasing

order of comment rate’s abnormality, and the vertical axis signifies the cumulative

number of code-change events occurred in the methods. That is to say, an earlier

growth of a curve means a better performance in predicting change-prone methods. In

the figure, solid red lines correspond to the results of and dashed blue lines

signifies the results by using the conventional scores. Similarly, Fig.2 compares the

power of fault-prone method predictions by and the power of that by the

conventional score.

In order to evaluate the effect to take into account the differences in comment rate

among developers, we introduce the following improvement rate :

(a) Doc Comment

(FreeMind)

(b) Doc Comment

(SQuirrel SQL

Client)

(c) Doc Comment

(Hibernate)

(d) Doc Comment

(Platform)

(e) Inner Comment

(FreeMind)

(f) Inner Comment

(SQuirrel SQL

Client)

(g) Inner Comment

(Hibernate)

(h) Inner Comment

(Platform)

Figure 1. Cumulative number of modifications occurred at methods that are sorted in the

decreasing order of their comment rates’ abnormality.

(a) Doc Comment

(FreeMind)

(b) Doc Comment

(SQuirrel SQL

Client)

(c) Doc Comment

(Hibernate)

(d) Doc Comment

(Platform)

(e) cxcxInner

Comment

(FreeMind)

(f) Inner Comment

(SQuirrel SQL

Client)

(g) Inner Comment

(Hibernate)

(h) Inner Comment

(Platform)

Figure 2. Cumulative number of bug fixes occurred at methods that are sorted in the

decreasing order of their comment rates’ abnormality.

Where represents the area under the curve of in Figs. 1 and 2, and

signifies the area under the curve using the conventional score in those figures. Since

a larger area means a better performance in predicting change-prone or fault-prone

methods, indexes the improvement of their prediction power by using , i.e.,

taking into account the difference in comment rate among developers.

Table 5. Improvement Rate with regard to Documentation Comments.

Software #Modifications #Bug Fixes

Free Mind 0.237 0.352

Squirrel SQL Client -0.074 -0.074

Hibernate 0.057 0.046

eXo Platform -0.199 -0.300

Average 0.004 0.003

Table 6. Improvement Rate with regard to Inner Comments.

Software #Modifications #Bug Fixes

Free Mind 0.318 0.488

Squirrel SQL Client 0.320 0.296

Hibernate 0.026 0.017

eXo Platform -0.009 -0.070

Average 0.131 0.146

Tables 5 and 6 describe the improvement rates with regard to the documentation

comments and inner comments, respectively. Table 5 shows that is not

resourceful for documentation comment (improvement rate on average). In

contrast, Table 6 justifies a part of our research question that taking into account the

differences in developer’s comment rate can be useful to an early prediction of

problematic code—change-prone and fault-prone methods: their improvement rates

are in – for both change-prone method prediction and fault-prone method

prediction. It seems that the differences in developer’s inner comment rate have a

promising effect on change-prone and/or fault-prone method prediction rather than the

documentation comment rates. Therefore, we will examine the change-prone and

fault-prone prediction powers of ownership-considered inner comment rate by

comparing with the conventional metrics, lines of code () and cyclomatic

complexity () in Sect. 3.4 and Sect. 3.5, respectively.

Analysis (2) OCCR vs Lines of Code (LOC)

In previous analysis, we have confirmed the helpfulness of (for inner

comments) for early detection of code changes and bug fixes in Java methods. In this

analysis, we compare with , which is a popular metric commonly used

for predicting fault-prone programs. Our procedure of the comparative study is similar

to Analysis (1) in Sect.3.3: we cumulate the numbers of modifications occurred at

methods that are sorted in the decreasing order of , and that are sorted in the

decreasing order of , respectively. We also compute the cumulative numbers of

bug-fixes occurred at methods in those orders.

(a) #Modifications

(FreeMind)

(b) #Modifications

(SQuirrel SQL

Client)

(c) #Modifications

 (Hibernate)

(d) #Modifications

 (Platform)

(e) #Bug Fixes

(FreeMind)

(f) #Bug Fixes

 (SQuirrel SQL

Client)

(g) #Bug Fixes

 (Hibernate)

(h) #Bug Fixes

 (Platform)

Figure 3. Cumulative numbers of modifications and bug fixes occurred at methods that are

sorted in the decreasing order of their comment rates abnormality and in the decreasing

order of LOC.

Figure 3 shows the curves of cumulative numbers. In the figure, solid red lines

correspond to the results of and dashed green lines signifies the results of

 . Table 7 shows the improvement rates defined in Eq.(4) where a1 and a0 are the

area under the curve of and that of , respectively.

From Table 7, we can say that is at almost the same or better performance

than in predicting change-prone methods and fault-prone ones:

improves the prediction power by and on average compared to

for change-prone method prediction and fault-prone method prediction, respectively.

FreeMind showed the best performance with , which improves around

for predicting modification occurrences and nearly for predicting bug fixes

occurred in the methods. While the bug fix prediction in SQuirreL SQL Client and the

code modification prediction in eXo Platform show negative improvement rates, both

of them are at small levels (and). Therefore, for most of projects,

 has a usefulness at the same with or better than in predicting

change-prone methods and fault-prone methods.

Table 7. Improvement Rates: VS .

Software #Modifications #Bug Fixes

Free Mind 0.192 0.391

Squirrel SQL Client 0.003 0.251

Hibernate 0.060 0.000

eXo Platform -0.001 -0.044

Average 0.027 0.147

Analysis (3) vs Cyclomatic Complexity ()

Next, we conduct another comparative study with using cyclomatic complexity ().

 has also been widely known as a useful metric for predicting fault-prone

programs. Our analysis procedure is similar to the one described in Sect.3.4, where

we replace “ ” with “ .” Due to limitations of space, we omit a figure of

cumulative numbers of modifications and bug-fixes occurred at methods in the

decreasing order of metric values like Fig.3, and we show only a table of

improvement rates (see Table 8).

Table 8. Improvement Rates: VS

Software #Modifications #Bug Fixes

Free Mind 0.259 0.391

Squirrel SQL Client 0.270 0.251

Hibernate 0.012 0.000

eXo Platform -0.001 -0.044

Average 0.131 0.147

As shown in Table 8, seems to be more useful than in predicting

change-prone methods and faultprone ones: the improvement rates are about

and on average for code modification prediction and bug fix prediction,

respectively. While eXo Platform showed small disimprovements (

and) similar to Analysis (2) (see Table 7), the remaining products showed that

 is at almost the same level with or better than in the predictions.

Especially, FreeMind and SQuirreL SQL Client showed over improvements.

Therefore, we can say that can be a more promising metric than Cyclomatic

Complexity.

Threats to Validity

This empirical work used five popular OSS products from different domains and in

different size for a generality of our empirical results. However, we had to limit our

subjects to Java products because of our data collection tool. While the language

limitation may be our threats to validity, the fundamental concept of commenting

code is common to almost all modern programming languages, so our results would

not lose its generality for other languages.

If there was a specific coding convention in the surveyed OSS projects and they

controlled developers on how to write comments, such a control can be our threats to

validity. JabRef did not show statistical difference in comment rate among developers,

so it might be controlled by a certain coding rule. However, we excluded JabRef from

our subjects in the main analyses (1)–(3), and the remaining products showed

diversities in comment rates among developers. Therefore, we can say that the

influence of coding convention would not be concern in our empirical results.

RELATED WORK

Recently, there are several studies that investigate the relationship between developer

activities to the fault proneness (Robbes & Rothlisberger, 2013; Rahman & Devanbu,

2011). However, all of their work do not consider comment as one of important

factors in predicting fault-prone programs. Aman et al. (2015) stressed on the

importance of comments and their relationship to the fault-proneness. They conducted

empirical analyses to show the worth to focus on Lines of Comments () as a

useful metric along with and in analyzing fault-proneness of Java methods.

While their work is our previous work, they missed to take into account the diversity

in commenting manners among developers, so an empirical analysis using

“ownership-considered comment rate ()” is our key contribution in this paper.

CONCLUSION AND FUTURE WORK

In this paper, we aimed to investigate the developer differences in commenting their

code, and the influence of such a diversity to the accuracy of change-prone and/or

fault-prone method prediction. In our first analysis, we had confirmed the efficiency

of our metric “Ownership-Considered Comment Rate ()” in detecting

change-prone and fault (bug)-prone methods compare to the conventional comment

rate. Our second and third analyses revealed that (for inner comments)

can be useful metric in predicting change-prone methods and fault-prone methods,

and its usefulness is at almost the same level with or better than conventional popular

metrics, (Lines of Code) and (Cyclomatic Complexity). Therefore, this

paper successfully showed the importance of taking into account the developers’

differences in commenting their code for more accurate change-prone and/or

fault-prone method prediction.

Our future work includes:

1. Examining the evolution of comments by developers through the software

development and maintenance;

2. Analyzing the contents of comments with the natural language processing

methods toward a better understanding the relationship between a developer and

their comments.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENSHI Grant Number 25330083.

REFERENCES

Aman, H., Amasaki, S., Sasaki, T., & Kawahara, M. 2015. Empirical Analysis of

Change-Proneness in Methods Having Local Variables with Long Names and

Comments. Proc. 2015 ACM/IEEE Int’l Symp. Empirical Softw. Eng. and

Measurement: 50–53.

Aman, H., Amasaki, S. Sasaki, T., & Kawahara, M. 2015. Lines of Comments as a

Noteworthy Metric for Analyzing Fault-Proneness in Methods. IEICE Trans.

Inf. & Syst. E98-D(12): 2218–2228.

Buse, R.P. & Weiner, W.R. 2008. A metric for software readability. Proc. Int’l Symp.

Softw. Testing and Analysis: 121–130.

Fowler, M. 1999. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Longman Publishing.

Martin, R.C. 2008. Clean Code: A Handbook of Agile Software Craftsmanship.

Prentice Hall PTR.

Rahman, F., & Devanbu, P. Ownership, Experience and Defects: A Fine-Grained

Study of Authorship. Proc. 2011 33rd Int’l Conf. Softw. Eng: 491–500.

Robbes, R., & Rothlisberger, D. 2013. Using Developer Interaction Data to Compare

Expertise Metrics. Proc. 2013 10th IEEE Working Conf. Mining Softw.

Repositories: 297–300.

Sliwerski, J., Zimmermann, T., & Zeller, A. 2005. When do changes induce fixes?

ACM SIGSOFT Softw. Eng. Notes. 30(4): 1–5.

Souza, S. C. B., Anquetil, N., & Oliveira, K. M. 2005. A Study of the Documentation

Essential to Software Maintenance. Proc. 23
rd

 Annual Int’l Conf. Design of

Communication: Documenting &Amp; Designing for Pervasive

Information: 68–75.

Steidl, D., Hummel, B., & Juergens, E. 2013. Quality analysis of source code

comments. Proc. 2013 IEEE 21st Int’l Conf. Program Comprehension:

83–92.

