
Investigation of Coding Violations Focusing on
Authorships of Source Files

Aji Ery Burhandenny
Graduate School of Science and Engineering, Ehime University

Matsuyama, Ehime, Japan 790–8577

Engineering Faculty, Mulawarman University
Samarinda, East Kalimantan, Indonesia 75119

Email: a.burhandenny@ft.unmul.ac.id

Hirohisa Aman
and

Minoru Kawahara
Center for Information Technology

Ehime University
Matsuyama, Ehime, Japan 790–8577

Abstract—While static code analysis tools would be helpful
in reviewing source code, they have not been actively utilized
in practice. One of main reasons why they are not used by
practitioners has been said that such tools output many warnings
(violations to predefined rules) but most of them are false positive.
Thus, there have been studies evaluating violations in the past.
This paper focuses on one of such studies, which evaluates
violations using their change patterns over releases. Then, the
paper examines an impact of authorship on those violation
evaluations because a preference of a certain programmer may
have an affect on a creation or modification of violation. This
paper collects violations made by a popular static code analysis
tool, PMD, from seven open source software projects. The set
of collected data is divided into two subsets according to the
authorship of source file: the set of violations appearing in
source files which have been developed and maintained by a
single programmer (single-authored files) vs. the set of ones
appearing in source files which have been done by two or more
programmers (multi-authored files). The results of data analyses
show the following findings: (1) the difference in the authoring
type has significant impacts on the trends of violations and their
evaluations; (2) while important violations tend to vary from
project to project and from person to person, about 30% of
violations would be commonly worthless across projects for many
programmers.

I. INTRODUCTION

Code review has been widely known for its usefulness in
detecting latent faults as early as possible [1]. While it is ideal
to perform code reviews for all source files whenever they
are upgraded, it would be difficult due to their performing
costs. In order to support the code review activity, automated
tools, i.e., static code analysis tools have been developed in
the past. While those tools can quickly and automatically
detect problematic code fragments or fault-prone ones and
they look to be great helps for code reviews, those tools have
not been actively used by practitioners in practice. According
to the report by Johnson et al. [2], one of key reasons why
practitioners do not use such tools is said that too many
warnings (violations to predefined rules) are outputted by
tools but most of them are false-positive and worthless for
many programmers. That is to say, many warnings are ones
that programmers do not consider to be fixed during their
programmings.

In order to address the issue of many false-positive vio-
lations, there have been studies which evaluate or prioritize
violations. Shen et al. [3] proposed to leverage feedbacks from
tool’s users for providing rankings of violations which are
more suitable for the users, and improving the true-positive
rate. However, their method is not always reasonable since
it requires a lot of manual evaluations (feedbacks) by user’s
hand. As an automated way of collecting evaluations, Aji et
al. [4] focused on change patterns of violations over releases,
and proposed a metric for evaluating violations, “Index of
Programmer’s Attention (IPA).” When some parts of a source
file were warned as a violation and the number of those
warned parts have been decreased through their upgrades, such
a decreasing trend is a proof that the programmer paid an
attention to the violation and fixed them. On the other hand,
if the number of warned parts have been constant or increased
through their upgrades, the programmer would disregard the
corresponding violation. IPA is a ratio of the former cases
to the latter cases as an index of violation’s importance.
While an empirical study using IPA was reported in literature
[4], the study missed a consideration for the authorship of
source files. When a source file has been developed and
maintained by a single programmer, the violations warned in
the source file depend on the programmer’s preference. If two
or more programmers are involved in the development and
maintenance of a source file, the violations appearing in the file
would be influenced by common sense of those programmers.
Thus, this paper will examine the impact of authorship on
the above evaluation of violations and report the results of
investigation.

The remainder of this paper is organized as follows: Section
II presents the research background and the definition of the
metric we used, and sets up our research questions. Section
III reports our data collection from open source software
(OSS) projects and the results of data analyses along with
our discussions. Section IV briefly describes the related work
of this study. Finally, Section V gives the conclusions of this
paper and the future plan of our study.

II. EVALUATION OF VIOLATION AND
AUTHORSHIP OF SOURCE FILE

In order to evaluate violations made by a static code analysis
tool, Aji et al. [4] focused on change patterns of violations over
releases: (1) one-shot, (2) sticky, (3) decreasing, (4) increasing,
and (5) other. The one-shot pattern of a violation means that it
appeared only at one version through all releases. The sticky
pattern of a violation refers to the case that the number of
appearances is constant from its first warned version to the
latest one. The decreasing pattern of a violation corresponds
to the case that the number of appearances monotonically
decreased after its first appearance version, and the increasing
pattern means a monotonically increasing case. The other
pattern is a mixed case of the above four patterns. Violations
belong to the one-shot pattern or the decreasing one seem to be
paid attentions by programmers since one or more violations
had been eliminated through a upgrade. On the other hand,
violations of the sticky pattern or the increasing one would
be disregarded by programmers because those ones were not
cleared throughout upgrades. Aji et al. proposed the following
metric, “Index of Programmers’ Attention (IPA)” using these
notions: For a violation (warning) v,

IPA(v) =
No(v) +Nd(v)

Ns(v) +Ni(v)
,

where No(v), Nd(v), Ns(v) and Ni(v) are the numbers of
parts warned as violation v belonging to “one-shot,” “decreas-
ing,” “sticky” and “increasing,” respectively.
When Ns(v) + Ni(v) = 0, we define IPA(v) = ∞. Notice
that the study excludes violation v such that No(v)+Nd(v)+
Ns(v) +Ni(v) = 0. 2

Based on the above notion, we can categorize violations
into the following three groups—priority “high,” “middle” and
“low”:

1) When No(v) + Nd(v) > 0 and Ns(v) + Ni(v) = 0
(IPA(v) = ∞), there were only cases that programmers
paid attentions. In these cases, violation v must be
related to problematic or fully-undesirable code. Such a
violation would be highly important in the code quality
management. We define v’s priority to be “high.”

2) When No(v) + Nd(v) ≥ Ns(v) + Ni(v) > 0 (1 ≤
IPA(v) < ∞), there were both cases that programmers
paid attentions and disregarded, and the number of for-
mer cases is greater than or equal to the number of latter
cases. In these cases, violation v would be relatively
important: we define v’s priority to be “middle.”

3) When No(v) +Nd(v) < Ns(v) +Ni(v) (IPA(v) < 1),
there were more disregarded cases, so violation v would
be insignificant: we define v’s priority to be “low.”

2

The above priorities of violations can be automatically
computed with using the code change history. It is an ad-
vantage of the proposal; while Shen et al. [3] proposed to
adjust priorities for improving a static code analysis tool, their
approach requires feedbacks from users and it would be hard

to collect a lot of data in the case of large-scale software
products.

Although the notion of IPA seems to be useful in evaluating
many violations automatically, it may be affected by differ-
ences in organization or style of development. If a source file
has been developed and maintained by a certain programmer
only, the paying-attention or disregarding would depend on
the programmer’s preference. Thus, we will focus on whether
a source file has been developed and maintained by a single
programmer or not, and examine its impact on the violation
evaluation in this paper. For the sake of convenience, we will
call a source file which has been developed and maintained by
a single developer, as a “single-authored file”; we will refer to
a source file which has been developed or maintained by two
or more developers, as a “multi-authored file.”

Toward a more sophisticated IPA-based evaluation of vio-
lations, we will tackle the following research questions:

RQ1: Does the difference in the authoring type have an im-
pact on the trend of violations and their evaluations?

RQ2: How many violations are commonly important or
worthless across projects and authoring types?

III. EMPIRICAL STUDY

A. Aim and Studied Projects

In order to answer the above RQs, we examine OSS prod-
ucts from the perspective of not only the coding violation’s
priority but also the file authorship. Table I shows the projects
surveyed in this study, which are the same as the dataset used
in the previous work [4]; Those projects had been randomly
selected from GitHub. By comparing IPA-based evaluations
of coding violations between the set of single-authored files
and the set of multi-authored ones, we study an impact of
authorship on the priority of coding violations.

B. Data Collection

For each project, we conducted our data collection in the
following procedure:

1) We cloned the repository on our local disk in order to
analyze the trends of coding violations smoothly.

2) For each release version, we checked out all files and
performed a static code checking by using the PMD (ver.
5.4.1) with its all rule sets.

3) For each file f , we examined who created f or made
changes to f by checking commit logs which f has been
involved in, i.e., author(s). Then, we counted the unique
number of authors associated with f , and decided if f

TABLE I: Surveyed OSS projects.

Project Name Investigation Period # of Releases
Guava Jan. 2010 − Dec. 2015 59
Elasticsearch Feb. 2010 − Feb. 2016 143
Spring Framework Dec. 2008 − Apr. 2016 85
React Native Mar. 2015 − Feb. 2016 56
JabRef Dec. 2011 − Jan. 2016 23
JUnit4 Dec. 2004 − Dec. 2014 20
Hibernate July. 2010 − Feb. 2016 111

is a single-authored file or a multi-authored one. Since
there may be an author who has two or more different
names or e-mail addresses, we integrated duplicated
authors by the following rules [5]: (1) if two authors
have different addresses but the same name, then we
regard them as the same author; (2) if two authors have
the same address but different names, then we regard
them as the same author.

4) For each single-authored file fs and each violation v
warned by PMD, we traced the change of its occurrences
over releases and decided its change pattern from (1)
one-shot, (2) sticky, (3) decreasing, (4) increasing and
(5) other. Similarly, we decided change patterns of all
violations by checking all multi-authored files as well.

5) For each violation v appeared in single-authored files,
we obtained No(v), Ns(v), Nd(v) and Ni(v) by count-
ing the decided patterns in all files, then computed
IPA(v) and decided its priority from “high,” “middle”
and “low.” We determined priorities of all violations
appeared in multi-authored files as well.

C. Analysis 1 (for RQ1): Comparison of Violations Appearing
in Single-Authored Files vs. Multi-Authored Files

If the difference in the authoring type—single author vs.
multi authors—has an impact on the coding violations, there
are differences in the sets of violations or in the priorities
of violations. That is to say, the former type is a distinct
difference such that the set of violations appearing in the
single-authored files differs from the set of ones appearing
in the multi-authored files. On the other hand, the latter
type of difference is more complicated: although appearing
violations are common regardless of the authoring type, there
is a discrepancy in their priorities. Thus, we checked these
two types of differences.

At first, for each OSS project, we examined the similarity
between the sets of violations which appear in the single-
authored files and in the multi-authored ones, respectively. We
computed the Jaccard index as the similarity: Let Vs and Vm

be the sets of violations appearing in the single-authored files
and in the multi-authored ones, respectively. The similarity
between them, Jac(Vs, Vm), is computed with the following
equation:

Jac(Vs, Vm) =
| Vs ∩ Vm |
| Vs ∪ Vm |

. (1)

The Jaccard index ranges from 0 to 1: a higher value corre-
sponds to a pair of sets which are more similar, i.e., there are
more common elements in those sets.

Table II shows the computed similarities. As the results,
there is a variety in the similarity. Most violations appearing
in Guava or Elasticsearch are common between the sets of
single-authored files and of multi-authored ones, where their
similarities are around 0.8. On the other hand, JUnit4 shows a
low-level similarity (0.115), so there are significant differences
between the sets of violations appearing in the single-authored
files and of the multi-authored ones.

TABLE II: Similarities between violation sets: single-authored
files vs. multi-authored files.

Project Jaccard Index
Guava 0.813
Elasticsearch 0.791
Spring Framework 0.637
React Native 0.547
JabRef 0.398
JUnit4 0.115
Hibernate 0.659

Next, we focused on whether there is a difference in
the trends of violation priorities in accordance with the file
authorship. Table III summarizes the numbers of violations
according to their priority levels and their authoring types.
From the table, we can see the common trend that most
appearing violations have low-level priorities, and only a few
violations are at the middle or high levels.

In order to examine a difference between violations accord-
ing to the authorships, we singled out those middle or high-
level-priority violations. Table IV shows those violations and
their priority levels according to authorships. While there are
29 violations1 having middle or high-level priorities in either
the single-authored files or the multi-authored ones, 15 out
of 29 violations appear only in one of two authoring types.
Moreover, 12 out of the remaining 14 violations have low-
level priorities in either the single-authored files or the multi-
authored ones. That is to say, important violations getting
programmers’ attention tend to differ in accordance with the
authorship of source file; Even if a violations is considered to
be important at a single-authored file, it may be disregarded
by many other authors (programmers). Such a difference may
come from the preference of programmer.

TABLE III: Number of violations according to their priorities
and authoring types.

Project Priority Single-Authored Multi-Authored
Low 146 161

Guava Middle 0 1
High 0 2
Low 140 169

Elasticsearch Middle 0 3
High 3 2
Low 119 177

Spring Framework Middle 0 1
High 0 1
Low 66 110

React Native Middle 0 1
High 4 0
Low 63 161

JabRef Middle 0 2
High 3 3
Low 14 111

JUnit4 Middle 0 0
High 0 1
Low 119 184

Hibernate Middle 0 0
High 4 0

1Violations “AddEmptyString,” “PositionLiteralsFirstInCaseInsensitive-
Comparisons” and “ImportFromSapePackage” appears across projects.

TABLE IV: Appearing violations with middle or high level priorities in single-authored files or multi-authored files.

Priority
Project Violation Single-Authored Multi-Authored

AddEmptyString Low Middle
Guava EmptyStatementNotInLoop — High

ForLoopsMustUseBraces Low High
JUnit4TestShouldUseTestAnnotation High Low
PositionLiteralsFirstInCaseInsensitiveComparisons High Low
CloneMethodMustBePublic — Middle

Elasticsearch DoNotCallSystemExit — Middle
UseProperClassLoader High Middle
BadComparison — High
DontImportJavaLang — High

Spring AddEmptyString — Middle
Framework UnusedLocalVariable — High

UnnecessaryLocalBeforeReturn — Middle
ConfusingTernary High Low

React Native IfStmtsMustUseBraces High —
SimplifyBooleanReturns High Low
UseLocaleWithCaseConversions High Low
MisleadingVariableName — Middle
UnusedImports — Middle
AvoidUsingShortType — High

JabRef DuplicateImports — High
AppendCharacterWithChar High Low
ImportFromSamePackage High High
SingletonClassReturningNewInstance High Low

JUnit4 DoNotThrowExceptionInFinally — High
AvoidCatchingNPE High Low

Hibernate ImportFromSamePackage High —
PositionLiteralsFirstInCaseInsensitiveComparisons High Low
TooManyStaticImports High Low

In Table IV, only two violations—emphasized in boldface—
have middle or high-level priorities in both of the authoring
types: “UseProperClassLoader” in Elasticsearch and “Import-
FromSamePackage” in JabRef. The former violation is a rec-
ommendation to replace the invocation of getClassLoarder()
with Thread.currentThread().getContextClassLoader() because
the original code might not work properly in the J2EE envi-
ronment. The latter violation is a warning that there is no
need to import classes within the same package. Since the
former violation seems to be related to a potential fault and
not to a programmer’s preference, it is natural that the violation
was fixed regardless of the authorship. On the other hand, the
latter violation would be on the way of coding and have a
little or no relation with a fault. Hence, making the violation
totally depends on who writes/maintains the code: While
“ImportFromSamePackage” has also a high-level priority in
the single-authored files of Hibernate, it does not appear in
the multi-authored ones of the same project.

In order to examine further correspondence relationships
between the sets of violations warned in single-authored
files and in multi-authored ones, we compared their IPA
values which are original data to decide the priority levels
of violations—low, middle and high. For each project, we
computed the Spearman rank correlation coefficient between
the sets of IPA values corresponding to violations warned in
the single-authored files and in the multi-authored ones. Table
V shows the results; Notice that those correlation coefficients
are computed by using only IPA values of violations which
are common to both the set of single-authored files and that of

TABLE V: Spearman rank correlation coefficients between the
set of single-authored files and that of multi-authored ones in
terms of IPA value.

Project Correlation Coefficient
Guava 0.492
Elasticsearch 0.339
Spring Framework 0.433
React Native 0.127
JabRef 0.160
JUnit4 0.000
Hibernate 0.344

multi-authored ones. In Table V, no strong correlation between
IPA values is observed in our data. That is to say, the priority—
the degree of attention paid by programmer—of a violation
appearing in single-authored files tends to be independent of
the priority in multi-authored ones, even when we focus only
on the common violations.

From the all results shown in this subsection, we can answer
to RQ1 as: the difference in the authoring type has significant
impacts on the trends of violations and their evaluations.

D. Analysis 2 (for RQ2): Comparison of Violations across
Projects

In the previous subsection, we have analyzed violations
by focusing on the difference in the authoring style. Now
we introduce another perspective of analysis: the comparison
across the projects.

For violations appearing in single-authored files, we com-
puted similarities among projects as well. Table VI shows the

TABLE VI: Similarities among projects in terms of the set of violations appearing in single-authored files.

Project (a) (b) (c) (d) (e) (f) (g)
(a) Guava — 0.606 0.514 0.403 0.333 0.096 0.573
(b) Elasticsearch 0.606 — 0.638 0.449 0.375 0.098 0.652
(c) Spring Framework 0.514 0.638 — 0.443 0.445 0.118 0.646
(d) React Native 0.403 0.449 0.443 — 0.432 0.200 0.462
(e) JabRef 0.333 0.375 0.445 0.432 — 0.176 0.432
(f) JUnit4 0.096 0.098 0.118 0.200 0.176 — 0.114
(g) Hibernate 0.573 0.652 0.646 0.462 0.432 0.114 —

TABLE VII: Similarities among projects in terms of the set of violations appearing in multi-authored files.

Project (a) (b) (c) (d) (e) (f) (g)
(a) Guava — 0.673 0.657 0.599 0.650 0.533 0.665
(b) Elasticsearch 0.673 — 0.783 0.575 0.735 0.529 0.817
(c) Spring Framework 0.657 0.783 — 0.543 0.742 0.524 0.833
(d) React Native 0.599 0.575 0.543 — 0.547 0.517 0.545
(e) JabRef 0.650 0.735 0.742 0.547 — 0.536 0.777
(f) JUnit4 0.533 0.529 0.523 0.517 0.536 — 0.526
(g) Hibernate 0.665 0.817 0.833 0.545 0.777 0.526 —

results. The average of similarities (excluding the ones with
themselves) is 0.342. Thus, about 30–40% of violations seem
to be common with other projects. Since (f) JUnit4 has lower
similarities with the others, it might have a special trend of
violations, caused by a particular author.

In a similar fashion, we computed similarities among
projects for violations appearing in multi-authored files. Table
VII presents the results. The average of similarities is 0.634:
about 60–70% of violations are common to other projects.

By comparing Tables VI and VII, the commonality of viola-
tions appearing in the multi-authored files is about 1.85 times
higher (on average) than the single-authored ones. Indeed, for
all pairs of projects, similarities in multi-authored files are
higher than the ones in single-authored ones—“Table VI <
Table VII”; for example, pair (a)-(b): 0.606 < 0.673, pair
(b)-(c): 0.638 < 0.783, pair (c)-(d): 0.443 < 0.543, and so
on. Trends of appearing violations are possibly generalized
through maintenances by two or more programmers.

Next, we examined which violations are common across
projects. Table VIII and Fig. 1 presents the numbers of
common violations across projects; Table VIII also shows
the numbers of violations corresponding to middle or high-
level priorities as the numbers enclosed in parentheses: for
example, 25 violations appearing in single-authored files are
common to 6 projects, and 2 out of 25 violations have middle
or high-level priorities2. In Table VIII, the maximum count
of violations warned in single-authored files is at column “1,”
thus, most violations appeared in a particular project only. On

TABLE VIII: Number of common violations across projects
and of ones corresponding to middle or high-level priorities.

Author # of Appearing Projects
ship 1 2 3 4 5 6 7

Single 53(0) 24(3) 28(2) 33(1) 26(2) 25(2) 12(0)
Multi 33(2) 19(1) 24(2) 20(0) 32(4) 35(3) 71(4)

2It corresponds to “Single” row, “6” column.

the other hand, the maximum count of violations warned in
multi-authored files is at opposite side “7,” which mean that
most violations are common to all projects. From these results,
we can say that: more project-specific violations tend to appear
in single-authored files, and more common violations do in
multi-authored files.

In multi-authored files, 67 (= 71−4) violations are common
to all projects but they have low-level priorities (see Table
VIII). That is to say, while those 67 violations must be popular,
all of them have been disregarded by many programmers.
Figure 2 presents the list of those 67 violations. They cor-
respond to about 30% of all violations. In other words, about
30% of automatically-warned violations might be worthless
for many programmers. On the other hand, we did not find
any violations having middle or high-level priorities, which
are common to three or more projects3. These results would
mean that critical violations vary from project to project.

Therefore, we can answer to RQ2 as: while important
violations tend to vary from project to project and from
person to person, about 30% of violations would be commonly
worthless across projects for many programmers. Thus, we
should prepare a proper rule set of violations in accordance
with the domain and organization of the project. It seems
to dovetail with the previous work saying the importance of
customization (flexibility) in static code analysis tools [3], [6].

0

20

40

60

1 2 3 4 5 6 7
of appearing projects

of

 v
io

la
tio

ns

type
multi
single

Fig. 1: Number of common violations across projects.

3Although Table VIII shows that 4 violations correspond to middle or high-
level priorities, it just means that these violations are “not common low-level
(disregarded)” ones. In other words, these 4 violations are not commonly-
regarded ones for all projects while one of them has a middle or high-level
priority at only one or two out of seven projects.

AbstractNaming, AccessorClassGeneration, AppendCharacterWithChar,
ArrayIsStoredDirectly, AssignmentInOperand, AtLeastOneConstructor,
AvoidCatchingGenericException, AvoidCatchingThrowable, AvoidDuplicateLiterals,
AvoidFieldNameMatchingMethodName, AvoidInstantiatingObjectsInLoops,
AvoidLiteralsInIfCondition, AvoidReassigningParameters,
AvoidSynchronizedAtMethodLevel, AvoidThrowingRawExceptionTypes,
AvoidUsingVolatile, BeanMembersShouldSerialize, BooleanGetMethodName,
CallSuperInConstructor, ClassWithOnlyPrivateConstructorsShouldBeFinal,
CommentDefaultAccessModifier, CommentRequired, CommentSize,
CompareObjectsWithEquals, ConfusingTernary, ConsecutiveLiteralAppends,
ConstructorCallsOverridableMethod, CyclomaticComplexity,
DataflowAnomalyAnalysis, DefaultPackage, DoNotUseThreads, EmptyCatchBlock,
EmptyMethodInAbstractClassShouldBeAbstract, ExcessiveImports,
ExcessivePublicCount, FieldDeclarationsShouldBeAtStartOfClass, GodClass,
ImmutableField, InefficientStringBuffering, InsufficientStringBufferDeclaration,
LawOfDemeter, LocalVariableCouldBeFinal, LongVariable, LooseCoupling,
MethodArgumentCouldBeFinal, ModifiedCyclomaticComplexity, NullAssignment,
OnlyOneReturn, PositionLiteralsFirstInComparisons, PreserveStackTrace,
RedundantFieldInitializer, ShortMethodName, ShortVariable,
SignatureDeclareThrowsException, SimplifyBooleanReturns,
StdCyclomaticComplexity, TooManyMethods, UncommentedEmptyConstructor,
UncommentedEmptyMethodBody, UnnecessaryFullyQualifiedName,
UnusedModifier, UseCollectionIsEmpty, UseConcurrentHashMap, UseUtilityClass,
UseVarargs, UselessParentheses, VariableNamingConventions

Fig. 2: Commonly-disregarded violations.

E. Threats to Validity

We heavily rely our data collection on Github repositories. It
may be a threat to validity in regard to a bias of data. Although
we mitigated the threat by selecting projects randomly, we
should perform a wider data collection and an analysis in order
to show a high-level generality of our results.

We examined Java source code only due to our tool (PMD)
limitation. There might be language-specific trends in our
results. Since we have just categorized violations and analyzed
their trends from a statistical perspective, we would like to
examine qualitative aspects of them in the future.

While we examined code changes in repositories, we are not
sure whether the programmers used a static code analysis tool
or not during their programming activities. Thus, our results
might not be well-matched with the programmers’ real trends
of regarding/disregarding violations. Although our method is
one of available ways to observe programmers’ practices, we
would need to validate our data and results in the future.

IV. RELATED WORK

Spacco et al. [7] exploited a fuzzy algorithm to determine
commonalities among violations. Lee et al. [8] analyzed how
the readability of code is affected by coding violations. While
their studies are useful in detecting important or disregarded
violations, they missed change history of violations over time.

Kim et al. [9] focused on the lifetime of warning (violation)
and used it for their prioritization. Their focus are similar
to our study. However, they did not consider the trends of
violation changes: change patterns. Even if a violation has
a long lifetime, there is a significant difference between
a decreasing trend and an increasing one in terms of its
importance. Our work utilizes the change patterns of violations
through real code modifications and used metric “IPA” as a
connection between human factors (programmers’ attentions)
and violation trends. Then, we have discussed an influence of
difference in the style of authoring source files.

V. CONCLUSION AND FUTURE WORK

In this paper, we focused on the authorship of source files,
and considered two authoring types: single-authored files and
multi-authored ones. The trends of coding violations warned in
single-authored files might be influenced by the programmer’s
preference, then there may be a significant difference in
evaluating violations. Thus, we examined the impacts of the
authoring type on evaluations of coding violations.

We collected violations warned by a popular analysis tool,
PMD, from seven OSS projects. Then, we analyzed the trends
of violations and their evaluations, by comparing the sets of
data from single-authored files and from the multi-authored
ones. From the results of analyses, we obtained the following
findings: (1) the difference in the authoring type has significant
impacts on the trends of violations and their evaluations; (2)
while important violations tend to vary from project to project
and from person to person, about 30% of violations would be
commonly worthless across projects for many programmers.

Hence, it is important to prepare an appropriate rule set
for the domain and organization of the target project while
considering the authorship of code, in order to utilize static
code analysis tools. Since the difference in programmers’
preferences may also cause the diversity of violations, we
need to focus on not only the number of developers but also
individual developers in the future. Our future work includes:
(1) a further analysis with more data of not only Java but also
other language; (2) a more detailed analysis focusing on each
programmer and his/her trend of making violations.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENSHI Grant Num-
ber 16K00099 and DIKTI Scholarships, Directorate Generale
of higher Education of Indonesia. The authors would like to
thank the anonymous reviewers for their valuable comments.

REFERENCES

[1] M. E. Fagan, “Advances in software inspections,” IEEE Trans. Softw.
Eng., vol. SE-12, no. 7, pp. 744–751, July 1986.

[2] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proc. 2013
Int’l Conf. Softw. Eng., May 2013, pp. 672–681.

[3] H. Shen, J. Fang, and J. Zhao, “Efindbugs: Effective error ranking for
findbugs,” in Proc. the 2011 Fourth IEEE Int’l Conf. Softw. Testing,
Verification and Validation, Mar. 2011, pp. 299–308.

[4] A. E. Burhandenny, H. Aman, and M. Kawahara, “Examination of coding
violations focusing on their change patterns over releases,” in Proc. 23rd
Asia-Pacific Softw. Eng. Conf., Dec. 2016, pp. 121–128.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining
email social networks,” in Proc. 2006 Int’l Workshop on Mining Softw.
Repositories, May 2006, pp. 137–143.

[6] C. Boogerd and L. Moonen, “Assessing the value of coding standards:
An empirical study,” in Proc. IEEE Int’l Conf. Softw. Maintenance, Sept.
2008, pp. 277–286.

[7] J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking defect warnings across
versions,” in Proc. 2006 Int’l Workshop on Mining Softw. Repositories,
May 2006, pp. 133–136.

[8] T. Lee, J. B. Lee, and H. P. In, “A study of different coding styles affecting
code readability,” Int’l J. Softw. Eng. & Its App., vol. 7, no. 5, pp. 413–
422, 2013.

[9] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in Proc.
6th Joint Meeting European Softw. Eng. Conf. & ACM SIGSOFT Symp.
Foundations Softw. Eng., 2007, pp. 45–54.

