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Abstract—Open source software (OSS) products have been
widely used for information systems, and a successful quality
management of OSS development has become one of key topics
in the information technology world. Since the development
and maintenance of an OSS product is driven by various
developers, it would be worthy to focus on their contributions
and the cooperative structure. This paper proposes to measure a
developer’s contribution to a source file as the cumulative lines
of code that he/she has changed on the file, and to evaluate the
balance of contributions to the file among different developers
in a form of an entropy. Through an empirical study using data
collected from 10 major OSS projects, the following findings are
reported: (1) a source file which has been maintained by two or
more developers (entropy>0) is about two times more likely to be
faulty than a file which has been done by only a single developer
(entropy=0); (2) when two or more developers have maintained a
source file and their contributions are more imbalanced (a lower
entropy), the source file is more fault-prone.

I. INTRODUCTION

In recent years, open source software (OSS) products have
been more and more popular in the information technology-
related business world [1]. For example, commercial software
products may partially leverage OSS products, or commercial
services may run on OSS-based servers. As OSS products
become more popular, the importance of their successful
quality managements gets higher. Source files of OSS products
and their development history data (commit logs) are almost
always available to everyone through their software reposito-
ries, and those source files and history data are useful research
materials for the quality management of OSS products. Indeed,
the mining software repositories (MSR) [2] has been one
of the hottest topics in the field of software engineering,
and there have been many MSR studies: for example, fault-
prone program predictions based on the fix history [3], [4];
maintenance supports focusing on the logical couplings (co-
change relationships) among source files [5], [6]; assessments
of code change impacts [7], [8]; just-in-time quality assurance
methods [9], [10], etc.

More recently, the MSR studies have focused on not only
the OSS products and their development processes but also
the developers [11], [12], [13], [14], [15]. That is to say, in
addition to the analysis of “what was changed in a source
file” and “when the change was made,” MSR studies have

focused on “who made the changes” and “how the developers
have been involved” as well. Since a success of an OSS
project usually depends on the contributions by developers,
it is worthy enough to understand developers’ contributions
and the collaborations among different developers in more
depth toward a better quality management of OSS project.
As a part of a developer-oriented MSR study, we focuses on a
structure for cooperation among developers in the development
and maintenance of a source file, and tackle the following
two questions in this paper. (1) Is there a difference in the
code quality between a multi-developer file (a source file
which has been developed and maintained by two or more
developers) and a single-developer file (a source file which has
been done by a single developer)? (2) when a source file has
been maintained by two or more developers, does the balance
of their contributions have an impact on the code quality?

The first question is on whether a source file has been main-
tained by only a single developer or not. In many OSS projects,
while many developers have joined in the development and
maintenance of source files, there are also source files which
have been maintained by a certain developer only—no other
person touched these files. We will empirically study if the
difference of contribution style, “single” vs. “multi,” has a
significant impact on the code quality in terms of the fault-
proneness.

The above second question is on an detailed insight into
the contributions by two or more developers. In this paper, a
developer’s contribution to a source file is quantified by the
cumulative number of source code lines which the developer
has added to or deleted from the source file1. When n (≥ 2)
developers have contributed to a source file, there are a lot of
variations in the balance of contributions among n developers.
For example, one of the developers may have dominantly
contributed to the source file and the contributions by the
remaining n− 1 developers may be really small. For another
example, all of n developers may have approximately equally
contributed to the source file. The difference of these two
example cases may cause a remarkable difference in the fault-
proneness of source files. We will evaluate the balance of

1A code modification is interpreted as a pair of code addition and deletion.



developers’ contributions by introducing a metric using the
notion of entropy, and analyze the relationship between the
metric value and the fault-proneness.

The remainder of this paper is organized as follows. Section
II explains our research questions and proposes our measure of
developers’ contributions. Section III reports our data analysis
and discusses the results. Section IV briefly describes the
related work. Finally, Section V presents our conclusion and
future work.

II. DEVELOPER’S CONTRIBUTION

A source code repository stores source files and their change
history. Thus, for each source file, we can easily obtain the
following information from the repository: “when the file was
created,” “when the file was changed,” “what was changed in
the file (the difference between before and after the change),”
“who made the creation/change,” etc. By analyzing these data,
we can observe the contributions of developers to the develop-
ment and maintenance of the source file. For example, given
a source file, we can investigate “who have been involved
in its development and maintenance” and “how many source
lines of code have been added, deleted or changed by each
of the developers.” They form a history of contributions by
developers. Different source files have different histories of
developers’ contributions. While one source file may have
been developed and maintained by a certain developer only,
another source file may have been done by many different
developers. Moreover, for the latter kind of source file, there
would be many variations in the structure for cooperation
among developers. For example, suppose two developers dA
and dB have contributed to a set of source files. While one
source file may have been dominantly maintained by dA and
the contribution by dB is a little, another source file may have
been evenly maintained by both dA and dB . Our research
interest is to analyze how such differences of contributions
affect the code quality, especially, the fault-proneness of source
files.

Notice that we focus only on the change history stored in
the code repository in order to see a developer’s contribution;
there are also other types of contributions such as the code
reviews, tests and discussions. Although it is ideal to take into
account all kinds of contributions, it is hard to collect all of
such data from any OSS project. Since the code repository
is commonly available at any OSS project, we will limit our
focus of “contribution” to the code changes in this paper.

A. Research Questions

According to our research interest mentioned above, we now
set our research questions (RQs) as follows.

RQ1: Is there a difference in the code quality between a
source file which has been developed and maintained
by two or more developers and a source file which
has been done by a single developer?

RQ2: When a source file has been maintained by two or
more developers, does the balance of their contribu-
tions have an impact on the code quality?

We explain the reasons why we set the above questions.
RQ1 is a fundamental question on the difference of devel-

opers’ contributions to source files. Needless to say, a source
file can be classified into two categories: 1) a source file
which has been developed and maintained by two or more
developers, and 2) a source file which has been done by a
single developer. For the sake of convenience, we will call the
former source file as “multi-developer file” and the latter one
as “single-developer file.” An involvement of more developers
to the maintenance of a source file might be better to enhance
the code quality because the code would be reviewed by
more people. However, there might also be an opposite effect:
such an involvement might cause unnecessary confusion in
the coding. Shortly, RQ1 is our simple question: “which is
better” in terms of the code quality, multi-developer file or
single-developer file?

Next, RQ2 is a further question on how developers con-
tribute to the development and maintenance of source files.
As mentioned above, there would be various structures for
cooperation in the maintenance of multi-developer files. The
aim of RQ2 is to clarify whether a difference in the structure
for cooperation is related to the code quality or not, from
the perspective of the balance of developers’ contributions to
multi-developer files.

In this paper, we will assess a code quality of a source file by
the fault-proneness of the files. Through data analyses on the
RQ1 and RQ2, we would be able to see what kind of source
files are fault-prone and require more careful review, from a
point of view on a structure of contributions by developers.

B. Contribution Entropy

For our data analysis on RQ2, we now introduce a novel
metric which is called “contribution entropy.” This metric
focuses on the source lines which have been changed by each
developer, and it quantifies the balance of these changed lines
among developers as an “entropy.” The notion of entropy is
well-known as a measure of information randomness in the
information theory [16]. We apply this notion to an evaluation
of the balance among developers’ contributions (the amount
of changed lines) to a source file. Shortly, we consider that
a source file has a high contribution entropy if the file has
been evenly changed by two or more developers because the
randomness of contribution is high; if the contributions are
dominant by a certain developer, the randomness is low, so
the contribution entropy of the file is low.

As a previous study, Taylor et al. [11] proposed the author
entropy. They focused on “who is the author of each source
line” in a source file. Fig. 1 presents a simple example of a
code fragment showing the author of each line2, where they
considered the author of line to be who edited it last. Then,
the author entropy evaluates the balance of source lines among
authors (developers). While the author entropy is an attractive
measure of developers’ contributions to a source file, there is

2This example is based on the result of running “git blame” for
src/main/java/io/reactivex/Completable.java in RxJava.



author line# code
d1 1 public final void subscribe(CompletableObserver s) {
d2 2 ObjectHelper.requireNonNull(s, ”s is null”);
d3 3 try {
d1 4
d2 5 s = RxJavaPlugins.onSubscribe(this, s);
d1 6
d2 7 subscribeActual(s);
d2 8 } catch (NullPointerException ex) {

...
...

...

Fig. 1. A simple example showing the author of each source line.

yet another way of evaluating the contributions focusing not
only the current code but also the past code. For example,
while the author of the second line in Fig. 1 is developer d2,
it was a result of rewriting the line by d2 and its original code
was written by d3. That is to say, the contribution of d3 to
the second line seems to be overridden by d2 when we use
the author entropy. Since it would better to regard that both
d2 and d3 have contributed to the second line in Fig. 1, we
introduce another notion using the “cumulative” source lines
changed by each developer.

There are two key reasons why we focus on the cumulative
changed lines rather than the current lines. One reason is that
we consider a deletion of source code to be a contribution as
well. Even if a developer just deleted some source code from
a source file at a commit, it is one of essential modifications
to build the current version of the source file. Thus, we should
not avoid considering a code deletion in order to evaluate a
developer’s contribution. Another reason is that there can be
two different developers before and after a code modification.
Suppose developer di modified a source code which was
originally written by different developer dj . Although the
modification is a di’s contribution, it may be based on the
original code and that is a dj’s contribution. Hence, it would
be reasonable to take into account not only di but also dj for
evaluating their contributions.

Let us take a simple example presented in Fig. 2 and Table
I. In the example, the source file was originally created by
developer d1 at revision 1 (“Rev-1” in Fig. 2). Through code
modifications and deletions by three developers d1, d2 and

Fig. 2. A simple example of code change history.

TABLE I
A SIMPLE EXAMPLE OF CODE CHANGE HISTORY.

revision event
1 d1 created a source file (100 lines).
2 d1 deleted 10 lines, and

modified 15 lines (deleted 15 & added 15).
3 d2 modified 20 lines (deleted 20 & added 20),

modified 18 lines (deleted 18 & added 18),
and deleted 5 lines.

4 d3 deleted 20 lines.
5 d2 modified 15 lines (deleted 10 & added 15).

d3, we obtain the revision 5 and then d2 is the developer
who last touched all lines of the source code (see “Rev-5 by
d2” row in Fig. 2; the green parts and the red ones signify
d1’s contributions and d2’s contributions, respectively). Since
the previous work [11] focused only on the current version
(revision 5), it evaluates that d1 and d3 have no contributions
to this source file. This example shows an importance of our
viewpoint and our motivation in this paper.

Now we define the “contribution entropy” as follows.
Definition 1 (Contribution Entropy):
Given a source file f , and suppose that n developers di

(for i = 1, . . . , n) have been involved in the development and
maintenance of f . Let ci(f) be the contribution by di, which
is the total number of source lines added to or deleted from
f by di until the current version3. Then, the following pi(f)
is a measure of the relative contribution to f by di (for i =
1, . . . , n):

pi(f) =
ci(f)
n∑

i=1

ci(f)

. (1)

We define the contribution entropy of f as:

H(f) =


0 (n = 1),

−1

log2 n

n∑
i=1

pi(f) log2 pi(f) (n > 1) .
(2)

Constant log2 n in the denominator is used for normalizing
the range of H(f) to [0, 1]. When n = 1, we specially define
as H(f) = 0 because log2 n = 0.

□
As we described above, if f is a single-developer file, n = 1

so we have H(f) = 0. When f is a multi-developer file,
H(f) varies from 0 to 1 in accordance with the balance
of pi(f) among developers {di}. If all pi(f)’s are equal,
i.e., all developers’ contributions to f are truly equal, we
get H(f) = 1. As the contributions get more imbalanced
among developers, H(f) becomes lower. That is to say, as the
contribution structure of f gets closer to a certain developer’s
monopoly, H(f) becomes closer to 0.

3One line modification is regarded as one line addition after one line
deletion. Thus, the contribution is expressed as two lines of changed code.



In the example case shown in Table I, we have c1(f) =
140, c2(f) = 106 and c3(f) = 20 just after revision 5. From
Eqs.(1) and (2), we get

p1(f) =
140

140 + 106 + 20
≃ 0.5263,

p2(f) =
106

140 + 106 + 20
≃ 0.3985,

and

p3(f) =
20

140 + 106 + 20
≃ 0.0752,

then

H(f) =
−1

log2 3
{ p1(f) log2 p1(f)+

p2(f) log2 p2(f) + p3(f) log2 p3(f) }
≃ 0.8183.

While all lines of f just after revision 5 look to be ones
made by only d2 (see Fig. 2), d1 has more contributions than
d2 if we focus on not only the current state but also the change
history of f ; if we focused only on the current state (revision
5) of f , the contribution is considered to be a monopoly of
d2 and H(f) becomes zero.

III. DATA ANALYSIS

On our RQs mentioned in Section II-A, we conducted a
data analysis using popular OSS projects. In this section, we
report and discuss the results.

A. Data Source

We collected data from popular OSS projects shown in
Table II. In order to ensure the generality and usefulness of our
results as high as possible, we selected them: they all ranked
in top 10 Java projects4 in terms of “stars” at the GitHub.

TABLE II
SURVEYED OSS PROJECTS

project # of source files # of commits
Butter Knife 125 279
Elasticsearch 5, 527 16, 671
Glide 609 1, 382
Guava 3, 131 4, 054
Java Design Patterns 1, 011 885
Kotlin 5, 090 21, 406
MPAndroidChart 235 1, 216
OkHttp 291 1, 344
Retrofit 210 535
RxJava 1, 497 731
total 17, 726 48, 503

4This ranking at the end of November 2017.

B. Procedure

We conducted our data collection and analysis in the fol-
lowing procedure.

1) Make a copy of the repository from the GitHub5.
2) Get the development history of each source file from the

repository.
For each source file included in the current version,
we investigate its development history (change logs) by
using “git log” command. In the investigation, we trace
the renaming operations to the file as well.

3) Extract data items required for our analysis.
By analyzing the commit logs that we got at step 2),
we extract the following items for each commit of each
source file: (a) commit hash, (b) whether it is aimed
at fixing a fault or not, (c) author’s name, (d) author’s
e-mail address, and (e) changed source lines.
The item (b) is decided if the corresponding commit
message contains a fault-fix-related keyword or not [17].

4) Organize the data collected at step 3).
Since there are source files which were renamed through
commits, we assign unique file IDs to source files in
order to identify them.
There may be an author who uses two or more different
names or e-mail addresses on the repository. We tried
integrating duplicated author data by the following set of
rules—it is a simpler version of the algorithm proposed
by Bird et al. [18]: (1) if two authors have different
addresses but the same name, then we regard them as
the same author; (2) if two authors have the same address
but different names, then we regard them as the same
author.

5) Analyze the collected data on RQs.
For RQ1:

a) For each source file f , we see whether f is a
single-developer file or a multi-developer file at
the end of the observation period (see Fig. 3), and
check if a fault fix is occurred at f during the
examination period or not. Here, the observation
period signifies the days in which we check the
development and maintenance of the source file,

Fig. 3. Observation period and examination period.

5The repository URLs are https://github.com/{ akeWharton/butterknife,
elastic/elasticsearch, bumptech/glide, google/guava, iluwatar/java-design-
patterns, JetBrains/kotlin, PhilJay/MPAndroidChart, square/okhttp,
square/retrofit, ReactiveX/RxJava}.git, respectively.



and the examination period corresponds to the days
in which we decide the file is faulty or not. Since a
new source file may be immature and require some
fixes, we empirically set the observation period as
1 year from the day that f was newly created, and
the examination period as 3 months from the end
of the observation period, respectively.

b) Classify the set of source files into two subsets:
the set of single-developer files and that of multi-
developer ones. Then, compare their rates of faulty
source files (the fault rates: FRs). A higher FR
value means a higher fault-proneness of source files
in the corresponding subset.

For RQ2:
a) For each source file f , compute its contribution

entropy, H(f), at the end of the observation period
(see Fig. 3). Then, we check if a fault fix is
occurred at f during the examination period or not,
which is the same as the above step a) for RQ1.

b) Classify the set of source files into five subsets
according to their contribution entropy: C0, C1,
C2, C3 and C4. C0 is the set of source files such
that H(f) = 0, i.e., the set of single-developer
files. The remaining source files are categorized
into C1 – C4 corresponding to equally divided
ranges of H(f): C1, C2, C3 and C4 correspond
to 0 < H(f) ≤ 1/4, 1/4 < H(f) ≤ 2/4,
2/4 < H(f) ≤ 3/4 and 3/4 < H(f) ≤ 1,
respectively.
After that, compare FRs among C0 – C4.

C. Results for RQ1

On RQ1, we compared the set of single-developer source
files and that of multi-developer ones in terms of the fault-
proneness. Table III and Fig. 4 show the results. Notice that the
total number of source files shown in Table III decreases from
the one show in Table II because new source files younger
than 15 months (the observation period plus the examination
period) are not included in our analysis.

The collected source files were dominated by the multi-
developer files: about 62% (≃ 9675/15664) of source files
were multi-developer. As a result, the multi-developer files
are about two times more likely to be faulty than the single-
developer one: 14.73% vs. 7.00%, and their difference was
statistically significant at a 5% significance level6.

TABLE III
COMPARISON OF SINGLE-DEVELOPER SOURCE FILES AND

MULTI-DEVELOPER ONES

file type # of source files # of faulty ones FR
multi-developer 9, 675 1, 425 14.73%
single-developer 5, 989 419 7.00%

total 15, 664 1, 844 11.77%

6The null hypothesis “the FR in multi-developer files is equal to the FR in
single-developer files” was rejected by a χ2 test with χ2 = 212.61, df = 1
and p value < 2.2× 10−16.
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Fig. 4. Comparison of the fault-proneness: single-developer source files vs.
multi-developer ones.

D. Discussions for RQ1

We compared multi-developer source files with single-
developer ones in terms of the fault-proneness. The results
of data analysis showed that a multi-developer file tends to
be more fault-prone than a single-developer one. The fault
rate of multi-developer files is about two times higher than
that of single-developer ones. In general, it would not be
easy to appropriately comprehend and update other people’s
code. Hence, such a difficulty may cause the above striking
difference between the two types of source file.

Now we consider a relationship with the program size
as well. The lines of code (LOC), one of the famous size
metrics, is well-known metric which is highly related to the
fault-proneness of programs [19]: a program having a higher
LOC is more fault-prone in general. The above trend might
be different according to the program size (LOC). Thus, we
categorize source files by their LOC values, then compare the
FRs between multi-developer files and single-developer ones
within each category. Table IV and Fig. 5 show the results,
where we have four categories according to the quartile of
LOC: (1) LOC ≤ 12, (2) 12 < LOC ≤ 41, (3) 41 < LOC
≤ 113, and (4) 113 < LOC.

As Fig. 5 shows, in the relatively large-sized source files
whose LOC categories are (3) or (4), the magnitude relation-
ship of FR between multi-developer files and single-developer
files is the same as the total result shown in Fig. 4. Moreover,
the gap of FR between file types gets larger as the source file
becomes larger. On the other hand, interestingly, the magnitude
relationship of FR inverts in the relatively small-sized source
files whose LOC categories are (1) or (2). The difference of

TABLE IV
COMPARISONS OF SINGLE-DEVELOPER FILES AND MULTI-DEVELOPER

WITHIN LOC CATEGORIES

file # of source # of faulty
LOC category type files ones FR
(1) LOC ≤ 12 multi 1, 727 49 2.84%

single 2, 311 98 4.24%
(2) 12 < multi 2, 145 105 4.90%

LOC ≤ 41 single 1, 718 123 7.16%
(3) 41 < multi 2, 715 322 11.86%

LOC ≤ 113 single 1, 139 87 7.64%
(4) 113 < LOC multi 3, 088 949 30.73%

single 821 111 13.52%



0.0

0.1

0.2

0.3

(1)
<=12

(2)
12−41

(3)
41−113

(4)
>=113

LOC category

fa
u

lt
 r

at
e 

(F
R

)

type
multi

single

Fig. 5. Comparisons of the fault-proneness: single-developer files vs. multi-
developer ones within LOC categories.

FR is statistically significant at 5% significance level in each
LOC category7.

As mentioned above, a successful comprehension and up-
date of other programmer’s code is not easy task. The difficulty
would increase as the program gets larger. Therefore, it seems
to be natural that the gap of FR becomes the largest one in
the LOC category (4). Similarly, as the program gets smaller,
a proper comprehension and update of code would become
easier even if the code was written by other programmers. A
smaller program originally tends to be less fault-prone, and
furthermore, its quality might be further enhanced through
contributions by other developers. Hence, the inversion of the
magnitude relationship in FR looks a natural trend as well.

Notice that the above results are derived from the data
of “fault fix” but not of “fault injection.” There may be a
case such that: a fault was injected into a source file when
the file was a single-developer one, and then the fault was
detected and fixed after the file became a multi-developer one
by a participation of another developer. One of key reasons
why more faults were detected and fixed in multi-developer
files might be that more developers reviewed these files. In
other words, a single-developer file might have latent faults
which have not been detected yet because the file has been
maintained by a certain developer only. Although our focus
on whether a source file is a single-developer file or not seems
to be noteworthy through this data analysis, we have to do a
more detailed analysis in the future: a further analysis on the
relationship between the fault injection and the switching of
file type from single-developer to multi-developer.

E. Results for RQ2

On RQ2, we classified the source files into five categories
C0, C1, . . ., C4 by their contribution entropy, and compared
these categories in terms of the fault-proneness. Table V and
Fig. 6 show the results.

As a result, the least fault-prone category is C0 whose
contribution entropy is zero, i.e., the category of the single-
developer files. In contrast, the most fault-prone category is

7(1) χ2 = 5.1557, df = 1 and p value = 0.02317; (2) χ2 = 8.4042,
df = 1 and p value = 0.003744; (3) χ2 = 14.634, df = 1 and p value
= 0.0001305; (4) χ2 = 99.438, df = 1 and p value < 2.2× 10−16.

TABLE V
COMPARISON OF SOURCE FILES CATEGORIZED BY THEIR CONTRIBUTION

ENTROPY

category # of source files # of faulty ones FR
C0 7, 087 445 6.28%
C1 1, 628 399 24.50%
C2 2, 240 412 18.39%
C3 2, 624 356 13.57%
C4 2, 085 232 11.13%
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Fig. 6. Comparison of source files categorized by their contribution entropy.

C1 which is right next to C0. Category C1 corresponds to
source files in which the developers’ contributions are highly
imbalanced. The fault-proneness (the FR value) decreases as
the contribution entropy gets higher, i.e., as the structure of
contributions gets away from the most imbalanced state.

F. Discussions for RQ2

In order to investigate the impact of contribution balance
among developers on the fault-proneness, we categorized
source files by their contribution entropy into five categories
C0 – C4, and compared their FR values. As a result, multi-
developer source files in category C1 are the most fault-prone.
In such a source file, there are two or more developers who
have had contributed to the file, but their contributions are
highly-imbalanced and one of the corresponding developers is
dominant. That state of source file would be made when the
file type was just changed from the single-developer to the
multi-developer. By a participation of another developer in
the maintenance of a source file, it seems to become unstable
in terms of the code quality and the most fault-prone.

As with the above discussion on RQ1, we categorized the
source files by their LOC, and examined changes in FR over
C0 – C4 as well. Table VI presents the results, where the
highest FR within each LOC category is emphasized.

As the results, category C1 was always the most fault-prone
regardless of LOC. Thus, we can say with more confidence
that multi-developer source files with highly-imbalanced con-
tributions are fault-prone. Such status would be created by a
participation of a new developer in the maintenance of a source
file. While participations of new developers are important to a
successful OSS project operation, the quality of a source file
may become transiently unstable when another programmer
started to change a part of code. That is to say, it would



TABLE VI
COMPARISONS OF FRS OVER THE CONTRIBUTION ENTROPY CATEGORIES

WITHIN LOC CATEGORIES

category # of source # of faulty
LOC entropy files ones FR

C0 2, 873 98 3.41%
(1) C1 45 3 6.67%
LOC ≤ 12 C2 96 2 2.08%

C3 219 14 6.39%
C4 498 13 2.61%
C0 2, 062 130 6.30%

(2) C1 232 15 6.47%
12 < C2 491 23 4.68%
LOC ≤ 41 C3 618 24 3.88%

C4 694 44 6.34%
C0 1, 252 95 7.59%

(3) C1 485 84 17.32%
41 < C2 744 114 15.32%
LOC ≤ 113 C3 888 71 8.00%

C4 512 52 10.16%
C0 900 122 13.56%

(4) C1 866 297 34.30%
113 < LOC C2 909 273 30.00%

C3 899 247 27.48%
C4 381 123 32.23%

be useful to pay more attention to such a source file for a
successful OSS project management.

We can consider the following two potential reasons why
C1 is the most fault-prone category of source file: (1) a fault
was created by a new developer through a code modification,
or (2) a fault was detected by a new developer. In general,
a code modification has a risk of a fault creation [20], [21].
Since it is not easy task to accurately comprehend and properly
change a source code written by other programmers, the fault-
creation risk would get higher when a code change is made
by a new developer. In another perspective, a participation of
a new developer includes another code review. Then, a latent
fault might be detected as a result of code review by a new
developer. In both cases, more faults may be detected from
source files of category C1. On the other hand, source files in
categories C2, C3 or C4 tend to be more changed and reviewed
more times by two or more developers. Through those code
changes and reviews, the source files may be polished and
become less fault-prone. Because our data is based on fault-fix
events in the repository, we cannot clearly analyze the above
potential reasons in this study. In order to examine the reason
why C1 is so fault-prone and the fault-proneness gets lower as
the contribution entropy becomes higher, we need to perform
a further analysis using data of “fault injections” in the future.

G. Threats to Validity

We analyzed OSS projects whose main-development lan-
guage is Java. Since our data collection method does not
depend on any Java-specific feature, we can perform a similar
analysis to other projects developed in other languages without
any changes of our method if their code is maintained with
Git. Since OSS projects written in other languages may show
different trends, it is a threat to the validity regrading the
generality of our findings, and our significant future work.

In order to ensure quality of code, some OSS projects
have strict checking (reviewing) systems for a code change
proposed by a developer. Such a checking system may have a
big impact on our results of data analysis. To mitigate such a
threat to validity, we collected a lot of data from various OSS
projects in different domains. We plan to perform a further
analysis focusing on project-specific features in the future.

IV. RELATED WORK

Bird et al. [12] focused on an ownership of a source file: an
ownership metric in their paper is the percentage of commits
made by major contributors. They reported that a source file
having lower ownership is likely to be more fault-prone. Aman
et al. [22] performed a survival analysis of the time to fault
fix, and proved the trend such that a source file modified
by a new developer has a shorter time to the occurrence
of the next fault fix. These previous work showed a risk of
transiently increasing the fault-proneness of a source file by a
participation of other developers in the maintenance of the file.
While the notion of such a risk is common to this study, we
performed a finer-grained data analysis which is at a source
line-change level rather than a commit level.

Matsumoto et al. [23] proposed developer metrics and
utilized those metrics for predicting faults in modules. Through
an empirical study using a dataset of the Eclipse Platform
project, they showed that their developer metrics can be useful
explanatory variables in fault-prone module prediction models.
Moreover, they reported that a module which has been touched
by more developers tends to be more fault-prone. While their
findings are consistent with our result for RQ1 mentioned
above, we have also performed an analysis of the relationship
with the source file (module) size in this paper. Furthermore,
we have studied multi-developer files in terms of the balance of
developers’ contributions rather than the number of developers.

Posnett et al. [13] focused developers’ contributions from
both the perspective of developer and that of module. In the
former perspective, they quantified the degree to which a
developer contributes to a certain module; in the latter one,
they evaluated the degree to which a module is contributed
by a certain developer. Through a data analysis, they reported
that a developer who has contributed to a certain module tends
not to induce a fault, i.e., he/she would be a specialist of the
maintenance of the module; a module which is contributed by
more developers may be fault-prone. While we also have the
latter perspective of their work, we analyzed the balance of
contributions as well in this paper.

V. CONCLUSION

We focused on the cumulative contributions of developers
to the development and maintenance of a source file, and
proposed a novel metric, contribution entropy, to evaluate the
balance of contributions to the file.

We performed a data analysis for 15, 664 source files from
10 popular OSS projects. As the results, the following trends
were founds: (1) a source file maintained by two or more
developers tends to be more fault-prone than a file maintained



by a certain developer only. The fault-proneness of the former-
type source file is about two times higher than that of the
latter-type one; (2) when a source file has been maintained by
two or more developers and the developers’ contributions are
more imbalanced, the source file is more fault-prone. From
the results, the fault-proneness of a source file seems to be
transiently increased when the file type changes from single-
developer to multi-developer, i.e., when another programmer
started to change a part of code. A successful OSS quality
management would be prompted by focusing on such changes
as well.

In order to understand a more detailed impact of another
programmer’s participation, we plan to check not only fault-
fix commits but also fault-inducing commits, and analyze who
made the corresponding code changes as our significant future
work. Moreover, to predict the code quality stability, we will
examine the impact of number of contributing developers
on the quality, and investigate changes in the contribution
entropy over time. Other our future work includes: (1) a further
analysis using OSS projects whose development languages are
other than Java to examine the generality of our findings, and
(2) an application of our results to the just-in-time quality
assurance studies.
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