Empirical Analysis of Coding Standard Violation
Focusing on Its Coverage and Importance

Aji Ery Burhandenny*!, Hirohisa Aman* and Minoru Kawahara?
*Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
"Engineering Faculty, Mulawarman University, Samarinda 75119, East Kalimantan, Indonesia
fCenter for Information Technology, Ehime University, Matsuyama, Ehime 790-8577, Japan

Abstract—Toward an effective utilization of static code analysis
tools, this paper investigates which violation is familiar with more
programmers and widely appears in source files (having a high
coverage), and which violation is really related to bugfixes (having
a high importance), for six popular OSS projects. The results
show: 1) the familiar violations tend to differ among projects,
and only 25 violations are common to all surveyed projects; 2)
the trends of their importance vary from project to project.

I. INTRODUCTION

An efficient performance of code review has become a great
challenge for developers. To support code review, static code
analysis tools have been developed. However, in many cases,
these tools have not been widely used by developers: a static
analysis tool tends to produce a huge number of warnings but
most of them are false positive ones, i.e., they are not serious
points to be revised [1], [2]. It is one of key reasons why
developers do not actively use such a tool. Therefore, toward
a better utilization of such tools, there have been studies in
the past (e.g, [3], [4]). While previous studies provide notable
findings and proposals, they have not well argued the real
trends of violations (warnings) made by a static analysis tool.
In this paper, we examine the coding violations from the
perspectives of how widely they appear and how important
they are in terms of bugfixes.

II. CODING STANDARD VIOLATION

A. Change of Coding Standard Violations through Commits

By using both the code repository and a static code anal-
ysis tool, we can get the change history of coding standard
violations in source files. Concretely, for each source file, we
obtain all versions of the file from the repository and check
them by a static code analysis tool. Then, for each violation
which appeared in a version of the file, we can see who made
it, who cleared it and when they made/cleared it.

Next, we consider the relationship of violations with latent
bugs. It is not always true that all coding standard violations
are related to the code quality, especially, the bug-proneness.
The strength of the relationship can be seen from the perspec-
tive of the violation change history. If the warning count of a
violation in a source file decreased when a bugfix was made
for the file, the violation seems to be related to the fixed bug.
On the other hand, if the warning count increased through a
bugfix, the corresponding violation is not related to the bug.

By checking the changes of violations through commits, we
can see which violation is stronger related to bugs.

B. Research Questions and Metrics

By observing changes of coding violations through com-
mits, we can see the following two things: 1) who makes
which violations, and 2) which violations are related to bugs.

When a violation has been made by a certain developer, the
violation seems to depend only on the developer. On the other
hand, when a violation has been made by more developers,
it would be a familiar violation which may appear more
frequently. Since the former type of violation is developer-
specific, the data analysis and discussion about such a violation
would not be attractive to many researchers and practitioners.
Hence, we will focus on the latter (more frequently-appearing)
violations in this paper, and analyze their importance from the
perspective of the bug-proneness. Now we set up the following
research questions (RQs) to clarify the aims of our empirical
analysis:

e RQI: Which coding violations are familiar with more
developers and more important in preventing bugs?

o RQ2: Does the difference of project cause differences in
the familiarity and the importance of a violation?

In order to collect quantitative data for answering the RQ1
and RQ2, we define metrics for measuring the familiarity and
the importance of a violation.

1) Violation Coverages: Suppose s source files have been
developed and maintained by p developers, and w violations
v; (for ¢ = 1,...,w) have appeared in those source files.
We quantify the familiarity of violation v; from two different
perspectives—the file coverage and the developer coverage.

The following metric FC(v;) is the file coverage of v;, which
expresses how widely v; appears in source files: FC(v;) =
ns(v;)/s, where ng(v;) is the number of source files which
have experiences with being warned as violation v;.

The following metric DC(v;) is the developer coverage of
v;, which signifies how widely v; is linked to developers:
DC(v;) = ny(v;)/p, where n,(v;) is the number of developers
who have made or increased v;.

Both FC(v;) and DC(v;) range [0, 1].

When a violation has both a high FC value and a high
DC value, the violation widely appears in source files and is
familiar with more developers.



2) Violation Importance: As mentioned above, if the warn-
ing count of violation v; decreased through a bugfix, v; seems
to be related to the fixed bug, and it would be an important
violation for preventing a bug inducing. On the other hand, if
the warning count of v; increased through a bugfix, v; seems
to be less important. By focusing on the difference between
the decreased count and the increased one, we define the
following metric IMP(v;) which presents an importance of v;:

IMP(1) = el elt o where m()

and 7. (v;) signify the numbers of bugfix commits in which
the warning count of v; decreased and increased, respectively.

Since the total number of the decrease commits would differ
from the total number of the increase commits, we define the
above metric by using the normalized values instead of raw
counts. It is like an evaluation of reactions to a news by using
the number of “thumbs up” and that of “thumbs down” which
we often see at a news Website such as Yahoo.com.

A higher value of IMP(v;) represents that v; has a stronger
link to a latent bug. Such link data can be an empirical
basis toward an effective code review with using a static code
analysis tool.

III. EMPIRICAL ANALYSIS

To answer the above RQs, we collect a lot of actual
data from OSS development projects and analyze the coding
violations which had appeared in the source files. In order to
ensure the generality and usefulness of our empirical results,
we randomly selected six popular OSS projects from the
GitHub: (1) Elasticsearch, (2) Guava, (3) JabRef, (4) JUnit4,
(5) React Native and (6) Spring Framework.

We computed FC, DC and IMP values of violations and
focused on violations having relatively high coverage, whose
FC and CD values are greater than their medians. As a result,
they differ among projects; Table I shows the number of
violations categorized by “IMP > 0” and “IMP < 0.”

As a consequence, only 25 violations are common to all six
projects (see Table II). There is only one violation whose IMP
value is always positive among projects, “UnusedImports.”
On the other hand, there are only two violations whose IMP
values are always non-positive, “CallSuperInConstructor” and
“CommentRequired.” That is to say, even if we focus only on
commonly familiar (higher coverage) violations, their trends
of importance differ from project to project.

The violation corresponding to always positive IMP value
is “UnusedImports.” Since this is based on the notion “avoid

TABLE I
NUMBER OF VIOLATIONS HAVING HIGH COVERAGE IN EACH PROJECT.

number of violations

project IMP >0 IMP <0
Elasticsearch 50 42
Guava 33 47
JabRef 21 26
JUnit4 23 25
React Native 34 32

Spring Framework 26 52

TABLE II
COMMON VIOLATIONS HAVING HIGHER FC VALUES AND DC VALUES.

# of projects

where IMP > 0 violations
6 UnusedImports
5 Dataflow AnomalyAnalysis
4 LawOfDemeter, AccessorMethodGeneration
3 LocalVariableCouldBeFinal, AvoidInstantiatingObjectsInLoops,

AvoidCatchingGenericException, AtLeastOneConstructor,
AvoidLiteralsInIfCondition, BeanMembersShouldSerialize,
UseConcurrentHashMap, OnlyOneReturn, CommentSize

2 ConfusingTernary, EmptyCatchBlock, GodClass,
UselessParentheses, DefaultPackage

1 TooManyMethods, CommentDefaultAccessModifier,
ShortVariable, LongVariable, Method ArgumentCouldBeFinal

0 CallSuperInConstructor, CommentRequired

unused import statements,” it does not seem to be a direct
cause of bug. This violation might be cleared by reorganizing
code when a bug is fixed.

While we found commonly-familiar 25 violations, their
importance vary from project to project as shown in Table
I. Since there are only a few violations which are commonly-
important or commonly-worthless, it would be better to tune
the priorities of violations to the project, and build a project-
specific evaluation model by using the feedback from its
change history of violations.

IV. CONCLUSION

We focused on coding standard violations warned by a static
code analysis tool, and proposed to evaluate them from the
perspective of the familiarity—a file coverage and a developer
coverage—and the importance—a strength of relationships
with bugfixes. We conducted an empirical analysis of coding
violations appearing in six popular OSS projects. As a result,
familiar violations seemed to differ among projects, and only
25 violations were common to all surveyed projects. Moreover,
the trends of their importance varied from project to project.
Therefore, we found that it is better to tune the assessments
of violations for each project, rather than to build a general
guideline of coding violations.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 16K00099 and DIKTI Scholarships, Directorate Generale
of higher Education of Indonesia.

REFERENCES

[1] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of auto-
mated static analysis tools for fault detection and refactoring prediction,”
in Proc. Int’l Conf. Softw. Testing Verification & Validation, Apr. 2009,
pp. 141-150.

[2] S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in Proc. Int’l
Conf. Softw. Analysis, Evolution, & Reeng. , Mar. 2015, pp. 161-170.

[3] Q. Hanam, L. Tan, R. Holmes, and P. Lam, “Finding patterns in
static analysis alerts: Improving actionable alert ranking,” in Proc. 11th
Working Conf. Mining Softw. Repositories, May 2014, pp. 152-161.

[4] J. P. Ostberg, S. Wagner, and E. Weilemann, “Does personality influence
the usage of static analysis tools? an explorative experiment,” in Proc.
IEEE/ACM Cooperative & Human Aspects of Softw. Eng., May 2016, pp.
75-81.



