
A Survival Analysis of Source Files Modified

by New Developers

Hirohisa Aman1, Sousuke Amasaki2,
Tomoyuki Yokogawa2, and Minoru Kawahara1

1 Ehime University, Matsuyama, Ehime 790–8577, Japan
2 Okayama Prefectural University, Soja, Okayama 719–1197, Japan

Abstract. This paper proposes an application of the survival analysis
to bug-fix events occurred in source files. When a source file is modified,
it has a risk of creating a bug (fault). In this paper, such a risk is analyzed
from a viewpoint of the survival time—the time that the source file can
survive without any bug fix. Through an empirical study with 100 open
source software (OSS) projects, the following findings are reported: (1)
Source files modified by new developers have about 26% shorter survival
time than the others. (2) The above tendency may be inverted if the OSS
project has more developers relative to the total number of source files.

Keywords: open source development, survival analysis, time to bug fix

1 Introduction

Open source software (OSS) products have been more and more popular in the
IT world. Many users and companies have utilized in their social life or business.
As an OSS product has more users or stakeholders, post-release failures occurred
in the product have larger impacts [4]. Hence, the quality management of OSS
products has gotten a lot of attention recently. A software product usually evolves
through its functional enhancements and bug (fault) fixes. Although it is ideal
that developers never create any bugs, the bug-free evolution would be hard in
reality; some code modifications are also creations of new bugs [6, 8]. Nonetheless,
frequent bug fixes are always undesirable in software development.

There have been many studies in regard to bug-fix prediction in the past.
Rahman et al. [11] reported the trend that recently-bug-fixed source files are
likely to be fixed again. Google utilized their results and released the prediction
tool working on Git repositories [5]. Bird et al. [3] and Posnett et al. [10] focused
on the ownership of source files and reported that a source file having lower
ownership is likely to be more fault-prone; low ownership of a source file means
that the file has not been developed and maintained by specific core developer(s),
i.e., the file has been modified by various developers.

According to the previous work, the change history and ownership of source
files are promising data for analyzing the occurrence of bug fixes. However, most
previous studies focused on the number of bug fixes or the bug-fix rate; we



consider that the time to bug fix would be yet another noteworthy feature to
be analyzed. For example, suppose bug fixes were made in two files fA and fB.
If fA was modified “one day” ago and fB was done “one year” ago, we should
preferentially examine the precedent modification of fA than fB. In order to
analyze such a difference, we will focus on the survival analysis [12]. The survival
analysis is popular in the medical field, which analyzes the survival rate and the
survival time of patients who were received specific treatments. In this paper, we
propose an application of the survival analysis to the bug-fix survival time—the
time to bug fix. The key contributions of this paper are as follows:

1. An application of the survival analysis to the bug-fix events in source files:
To the best of our knowledge, although there have been studies utilizing the
survival analysis to the substantivity of OSS projects [2, 14], there have not
been a study applying it to the time to bug fix.

2. An empirical report with many OSS projects: We collected data from 100
OSS projects, and report the results of the bug-fix survival analysis.

2 Survival Analysis and Its Application to Bug Fix

2.1 Survival Analysis

The survival analysis is a statistical method for analyzing the time to the occur-
rence of an event (e.g., a patient death in a clinical site).

Let t be the elapsed time from the start of our observation, and S(t) be the
probability that the event of interest had not been occurred until t, i.e., a subject
survives at t. S(t) is a monotonically decreasing function and called the survival
rate function. The expected survival time μt is computed as:

μt = −
∫

t dS(t) . (1)

That is to say, μt is the area under S(t) (see Fig. 1).

Fig. 1. Example of S(t) and μt (area of the hatched part).

Needless to say, there may be a subject which has survived after the end of
our event observation. Such a subject is called a “censor sample.” If we have a
censor sample, we cannot get true S(t). However, when our event occurrence time
is discrete type (t = t1, t2, . . . , ti, . . .), we can estimate it by using the Kaplan-
Meier (KM) method (see [7] for the details). The KM method is a popular
non-parametric method for estimating S(t) using the cumulative hazard as:



S(ti) =

i∏
k=1

{ 1− λ(ti) } , (2)

where λ(ti) is the hazard at ti and λ(ti) = ei/ni; ni is the number of subjects
which have survived at least just before ti and ei is the number of subjects which
died (encountered the event) at ti, respectively.

2.2 Application of Survival Analysis to Bug Fix

Now we consider another survival analysis in which a subject and an event are a
source file and a bug fix, respectively. Then, we can develop a model of the time
to bug fix in a source file. While many studies have been done for predicting
bug fixes in the past, most of them focused on the number of bug fixes or
the occurrence rate. We will focus on yet another point of view in this paper.
According to the previous work regarding the file ownership [3, 10], modifications
made by new developers may have higher risks of causing future bug fixes. By
analyzing the survival time to bug fix, we will evaluate such risks. We describe
the survival analysis of the time to bug fix in the remainder of this section.

Let f be a source file, and tE be the time when the observation was finished,
respectively. Then, let tM (< tE) be the time when f was finally modified (or
created) but the modification was not a bug fix. If a bug is fixed in f at tB, the
life time of f to the bug fix, L(f), is computed as L(f) = tB − tM . If bug fixes
occurred in f twice or more, use the oldest bug-fix time as tB; if no bug fix was
observed until tE , f is a censor sample. Then, we define L(f) = tE − tM .

Next, we check the developer who made the modification at tM , and examine
whether he/she is a new developer who has never been involved in f before tM .
Then, we categorize f into two types, NEW and CONV—if f is modified by
a new developer at tM , we consider f to be Type NEW; otherwise, f is Type
CONV which means that the modification is made by a conventional developer.

Table 1 presents a simple example where eight files f1, f2, · · ·, f8 have been
developed and maintained by three developers (ID = 1, 2, 3). Symbols “A,” “M”
and “B” in the table signify a creation of new file, a modification of a file, and a
bug fix of a file, respectively. Their subscripts denote the developer ID who made
those work. For each file, the modification (or the creation) according to its tM
is marked with an asterisk. For example, f1, f4 and f5 are modified by developer
1 at t = 21. f1 is Type NEW because its final modification at t = 26 is made
by developer 2 and it is the first time for developer 2 to modify f1 at that time.
Similarly, f5 is Type CONV since its final modification before the bug fix (at
t = 21) is made by developer 1 and he/she had already been involved in f5. Since
f1, f4, f6 and f8 have no bug fix within the observation duration (0 ≤ t ≤ tE),
they are censor samples and their life times are computed as L(fi) = tE − tM .
The remaining files’ life times are obtained as L(fi) = tB − tM .

The KM method can estimates the survival rate function S(t) with Equation
(2). Figure 2 shows the estimated S(t) of each type. We can see that NEW has
a shorter life time to bug fix than CONV. The expected survival time of NEW



Table 1. Example of source file development history.

file t tE type tB tM L(fi)

0 5 12 15 18 20 21 25 26 30 31 35

f1 A1 M1 M1 M∗
2 NEW — 26 9

f2 A1 M∗
2 B2 NEW 25 20 5

f3 A1 M∗
2 B1 NEW 18 15 3

f4 A2 M1 M∗
3 NEW — 31 4

f5 A1 M∗
1 B2 CONV 25 21 4

f6 A1 M2 M∗
2 CONV — 15 20

f7 A∗
2 B2 CONV 25 12 13

f8 A∗
3 CONV — 30 5

and CONV are 6 and 13.375, respectively3. While both type have the same bug-
fix rate (50%), they have remarkable differences in terms of expected survival
time—6 vs. 13.375: the expected survival time of Type NEW is shorter than the
half of Type CONV’s survival time.

Fig. 2. Estimated S(t)’s for NEW and CONV types in Table 1.

3 Empirical Study

3.1 Dataset

We collected 100 local copies of OSS projects’ repositories which are available on
the GitHub, and obtained data to be analyzed from those repositories. Our sub-
ject projects consist of 50 Java projects and 50 C++ ones. The main reason why
we selected these projects is their popularities; we believe that a finding derived
from more popular projects is more attractive for more researches and practition-
ers. These projects have high “stars” scores at GitHub: We performed project
searches sorted by “most stars” option, where the search keywords were “Java”
and “C++,” respectively. Table 2 presents the names of collected projects.

3.2 Procedure

For each project, we conducted our empirical study in the following four steps.

3 NEW: 1× 3 + 0.750 × (5− 3) + 0.375 × (9− 5) = 6; CONV: 1× 4 + 0.750 × (13−
4) + 0375 × (20− 13) = 13.375.



Table 2. Analyzed OSS projects (in decreasing order of “stars”).

Java projects C++ projects

RxJava, elasticsearch, retrofit, okhttp,
java-design-patterns, guava, leakcanary,
zxing, libgdx, interviews, fastjson, dubbo,
Android-CleanArchitecture, realm-java,
MaterialDrawer, ExoPlayer, deeplearning4j,
BottomBar, spark, vert.x, dagger, presto,
junit4, Android-Bootstrap, dropwizard, Ulti-
mateRecyclerView, uCrop, jedis, auto, guice,
mybatis-3, jadx, metrics, mockito, HikariCP,
webmagic, buck, j2objc, jsoup, lombok,
rebound, swagger-core, pinpoint, scribejava,
okio, android-classyshark, async-http-client,
mosby, CoreNLP, dex2jar

folly, imgui, json, libphonenumber, open-
Frameworks, Catch, proxygen, capnproto,
rapidjson, libzmq, libsass, muduo, crow,
tiny-dnn, ppsspp, dlib, spdlog, Cpp-Primer,
openpose, pybind11, GamePlay, re2, con-
currentqueue, envoy, oclint, zopfli, nghttp2,
cpprestsdk, websocketpp, osrm-backend,
BansheeEngine, swig, i2cdevlib, algo-
rithms, AtomicGameEngine, mlpack, thrust,
iaito, glog, cpr, cpp-ethereum, magnum,
cppcheck, gosu, phxpaxos, deepdetect,
actor-framework, cereal, oryol, cling

1. Made a copy of the repository, and obtained the set of source files included
in the latest version (F ). Source files for testings, demos and documents were
excluded from F . Let tE be the time when the repository was copied.

2. For each f ∈ F , extracted its change history from the commit logs, and
decided tB : if the commit message of f contained a bug fix-related keyword,
we considered that a bug fix was performed in f at the commit [13].

3. For each f ∈ F , determined tM and and f ’s type—NEW or CONV. The
identification of developer was performed in accordance with the following
rules [1]: if two developers had the same name or the same e-mail address,
we considered that they are the same developer.

4. Estimated the survival rate function S(t) for each types, NEW and CONV,
using the KM method. Then, computed the expected survival time with
Equation (1): let μN and μC be the expected survival time in NEW and
CONV, respectively. To compare their differences across projects, define the
following criterion, Δμ:

Δμ =
μC − μN

μC
. (3)

If Δμ has a larger positive value, Type NEW files have shorter expected
survival times than Type CONV ones. While “μC − μN” directly shows the
difference of two survival times, we considered it is better to normalize the
difference with using one of those times because there would be dispersions
of survival times among projects; such a raw difference would not be suitable
for comparing different projects.

3.3 Results

Table 3 and Fig. 3 show distributions of Δμ values. The median and the average
(mean) of Δμ in the 100 OSS products are 0.394 and 0.258, respectively (see
Table 3). Moreover, a majority of projects show Δμ > 0 (see Fig. 3). In other
words, the expected survival times of Type NEW source files tend to be about
26% shorter than that of Type CONV on average.



Table 3. Distribution of Δμ values in analyzed OSS projects.

min 25% median mean 75% max

−1.675 0.048 0.394 0.258 0.628 0.997

−1

0

1

Δμ

Fig. 3. Boxplot of Δμ values in analyzed OSS projects.

3.4 Discussions

Through the survival analysis, we have understood a major trend of time to bug
fix in many OSS projects—how long time a source file tends to take until a bug
fix, rather than whether a bug fix would occur or not. A source file modified
by a new developer (Type NEW) would have a higher risk of a latent bug and
the time to bug fix would be about 26% shorter than another type of source file
(Type CONV). This trend seems to support the previous work regarding the file
ownership [3, 10].

While the above results show an overall trend, some projects had small Δμ
values or the opposite trends. To examine if there is a statistically significant
difference between NEW and CONV in terms of S(t), we performed the log-
rank test [9] (at a 5% significance level). The test results were as follows: there
seem to be significant differences in 65 products (does not in 35 products); in
56 out of 65 products, Type NEW tends to have a shorter survival time (denote
it by “NEW < CONV”); the remaining 9 products show the opposite tendency
(“CONV < NEW”).

To explore a difference between two cases “(a) NEW < CONV” and “(b)
CONV < NEW,” we examined the numbers of developers (= nd) and source
files (= nf ) in those projects, and calculated the ratio between them: r = nd/nf .
While the average of r values in case (a) is about 0.079, that in case (b) is 0.246.
That is to say, r in case (b) is about 3 times larger than case (a); furthermore,
the average r of the outliers shown in Fig. 3 is 3.93 which is about 50 times
larger than case (a). Hence, case (b) tends to have more variety in terms of
developers relative to the number of source files to be maintained, and they
would be projects which more new developers can actively contribute to. We
would like to do a further analysis from such a viewpoint as our future work.

Now, we have to notice that we have checked bug “fixing” events but not
bug (fault) “inducing” ones. In other words, even if a bug fix occurred after



a new developer’s commit, it is not always true that the corresponding fault
was induced by the new developer. We need to perform a further analysis of
fault-inducing commits in the future for an enhanced discussion.

3.5 Threats to Validity

We collected only Java and C++ data from only Git repositories. Since our
analysis method is applicable to any other programming languages and version
control systems (VCSs) without any change, the limitations of language and
VCS are not serious threats to validity. Nonetheless, there is a risk of getting
different results in OSS projects other than the ones we examined. To mitigate
such a threat, we collected empirical data from a set of many popular projects.

While we focused on whether a source file modification was made by a new
developer or not, we did not examine his/her experience of maintaining other
source files and expertise. Since our findings in this paper are derived from a lot
of samples, impacts of individuals on our results might not be serious threats. A
further analysis on individuals is our important future work.

We decided whether a commit is a bug fix or not, by using a keyword match-
ing method [13], and it is a popular way of detecting bug-fix commits in the
mining software repository community. However, our analysis was based on the
assumption that all commit messages provided proper information in regard to
their code changes. The assumption can be a threat to validity. For example,
some bug-fix commits might be missed in our dataset because some developers
might not appropriately describe their commit messages even if they performed
bug fixes. The development of a more accurate detection method is one of our
future challenges.

4 Conclusion

For a bug fix of a source file in an OSS development, we focused on the developer
who made the last modification of the file before the bug fix—whether the de-
veloper had an experience of modifying the file at the time or not. In accordance
with the above developer type, we categorized source files into the following two
types, NEW and CONV: if a source file’s last modification before its bug fix
(or the end of our observation) was made by a new developer who had never
modified that file, the source file is Type NEW; otherwise, it is Type CONV.
Then, we considered to compare these two types in terms of the time to bug
fix through a survival analysis, and conducted an empirical study with 100 OSS
projects which are available on the GitHub. The empirical results showed that
the expected survival time of Type NEW source files is about 26% shorter than
that of Type CONV ones. That is to say, when a source file is modified by a new
developer who had not been involved in the maintenance of the file, that file is
likely to require a bug fix sooner. In such a case, a more careful review would be
useful to prevent a quality degradation.



On the other hand, if a project has more developers relative to the total
number of source files, the project tends to produce the opposite tendency: Type
NEW has a longer expected survival time. Such a project may be easier for more
new developers to contribute. A further analysis on those points of view is our
future work. Moreover, we plan to take into account the degree of a developer’s
familiarity with a file and to perform a further analysis toward a just-in-time
defect prediction.

Acknowledgment

This work was supported by JSPS KAKENHI #16K00099. The authors would
like to thank the anonymous reviewers for their helpful comments.

References

1. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email
social networks. In: Proc. Int’l Workshop Mining Softw. Repositories. pp. 137–143.
(2006)

2. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders?
immigration in open source projects. In: Proc. 4th Int’l Workshop Mining Softw.
Repositories (2007)

3. Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!:
Examining the effects of ownership on software quality. In: Proc. 19th ACM SIG-
SOFT Symp. & 13th European Conf. Foundations of Softw. Eng. pp. 4–14. (2011)

4. Black Duck: the 2017 Open Source 360◦ Survey.
https://www.blackducksoftware.com/about/news-events/releases/open-source-
360-organizations-increase-reliance-open-source (2017)

5. Google: Bugspots. https://github.com/igrigorik/bugspots (2011)
6. Jones, C.: Applied Software Measurement: Global Analysis of Productivity and

Quality. McGraw-Hill, New York, 3rd ed. (2008)
7. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.

J. American Statistical Association 53(282), 457–481 (1958)
8. Li, Y., Li, D., Huang, F., Lee, S.Y., Ai, J.: An exploratory analysis on software de-

velopers’ bug-introducing tendency over time. In: Proc. Int’l Conf. Softw. Analysis,
Testing and Evolution. pp.12–17. (2016)

9. Peto, R., Peto, J.: Asymptotically efficient rank invariant test procedures. J. Royal
Statistical Society. Series A (General) 135(2), 185–207 (1972)

10. Posnett, D., D’Souza, R., Devanbu, P., Filkov, V.: Dual ecological measures of focus
in software development. In: Proc. Int’l Conf. Softw. Eng. pp. 452–461. (2013)

11. Rahman, F., Posnett, D., Hindle, A., Barr, E., Devanbu, P.: Bugcache for inspec-
tions: Hit or miss? In: Proc. 19th ACM SIGSOFT Symp. & 13th European Conf.
Foundations of Softw. Eng. pp. 322–331. (2011)

12. Rupert G. Miller, J.: Survival Analysis. John Wiley & Sons, Hoboken, NJ (2011)
13. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Proc.

Int’l Workshop Mining Softw. Repositories. pp. 1–5 (2005)
14. Samoladas, I., Angelis, L., Stamelos, I.: Survival analysis on the duration of open

source projects. Inf. & Softw. Tech. 52, 902–922 (2010)


