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Abstract—Giving a name to a local variable is usually a
programmer’s discretion. Since it depends on the programmer’s
preference and experience, there is a lot of individual variation
which may cause a variability in the code quality such as the
readability. While there have been studies on the naming of
local variables in the past, a relationship of names among local
variables within a method (function) has not been well-discussed.
This paper focuses on a pair of local variables with similar,
confusing names, e.g., “lineIndex” vs. “lineIndent.” Since such
local variables are confusable with each other, the presence of
such a confusing pair may be related to the fault-proneness of the
method. An empirical analysis for five major open source Java
projects is conducted, and the following results are reported: (1) a
method having a confusing variable pair is about 1.1 – 2.6 times
more fault-prone than a method having only dissimilar (non-
confusing) pairs; (2) the proposed metric of how confusing the
local variables are is equivalent to or better than the conventional
cyclomatic complexity in predicting fault-prone methods.

I. INTRODUCTION

A proper quality management of source code is essential to
a successful software development and maintenance. Since a
coding activity is an intellectual task by a programmer, i.e.,
a human being, an individual variation in the code quality
would be inevitable. One of the most diverse artifacts in source
code is a local variable in a method (function). Since the
requirements specification and the design documents usually
do not specify the declaration and use of local variables, pro-
grammers can freely decide them during their coding activity.
Different programmers may give different names to a local
variable for the same purpose. Such an individual difference
causes a variation of the code quality such as the readability. In
general, names (identifiers) are important information source
to comprehend the code [1]. In other words, the quality of
name plays a significant role to lead the code readers to a
proper understanding of the code; meaningless or improper
names degrade the source code [2], and may cause a fault
creation or an overlooking of fault.

There have been studies focusing on variable names (or
identifiers in the more general sense) in the past [3], [4], [5],
[6], [7], [8], [9]. For example, they analyzed the length and
the composition of local variable’s name, and discussed the
relationships with the code comprehension or the code quality.
While these previous work presented actionable results, their

main focuses were on the “individual names” but not the
“relationships between names.” As a novel point of view, we
focus on the similarity between local variables’ names. If there
is a pair of local variables with highly-similar names, they
would be confusable with each other: for example, “lineIndex”
vs. “lineIndent.” The presence of such a confusing pair may
have an impact on the code quality. In this paper, we propose
to quantify the degree to which local variables’ names are
confusing, and perform an empirical study to examine its
impact on the fault-proneness of methods.

The remainder of this paper is organized as follows. Section
II briefly describes the related work focusing on local vari-
ables’ names, and presents our research motivation. Section
III introduces the key notion of “confusing names” of local
variables and defines a metric to measure the degree to which
two names are confusing. Section IV reports and discusses the
results of our empirical study. Finally, Section V presents the
conclusion of this paper and our future work.

II. RELATED WORK

Lawrie et al. [3] focused on the composition of variable’s
name, and conducted a comparative survey on the program
comprehension with using three types of names: a fully-
spelled word, an abbreviated word and a single character,
e.g., “index,” “idx” and “i,” respectively. They showed that
the understandability of a name decreases in the order of a
fully-spelled one, an abbreviated one and a single-character
one, but there is no significant difference between the fully-
spelled name and its abbreviated one in the comprehension by
programmers. A similar trend is supported by the large-scale
experiment which was conducted and reported by Scanniello
et al. [4]. Kawamoto and Mizuno [5] focused on the length
of identifier and reported that a class having a long identifier
tends to be fault-prone. Aman et al. [7] also reported that a
method having a local variable with a long name is change-
prone and cannot survive unscathed. Although a long name of
a variable can describe its role more accurately, a long name
may decay the readability of code [6]. Kernighan and Pike [10]
said that it is overdone to use a long and descriptive name for
a variable if its scope is narrow.



Binkley et al. [8] compared the impact of difference in the
naming style—the camel case and the snake case, e.g., “max-
Value” vs. “max value”—on the program comprehension. As
the result, they reported that the camel case is better for
programming beginners in terms of the comprehension while
there is no significant difference for experts. Bulter et al. [9]
proposed 12 naming rules and showed that programs whose
identifiers are against their rules are fault-prone.

As the above studies reported, a name of variable (identifier)
is a noteworthy feature in the program comprehension and
quality management. To the best of our knowledge, however,
the previous work focused on the “individual” name; a “rela-
tionship between names” has not been well-discussed in the
past. When a method has two or more local variables, the
similarity among them would be yet another interesting point
of view. This is our research motivation in this paper.

III. CONFUSING NAMES OF LOCAL VARIABLES

As we mentioned above, we focus on a relationship between
local variables’ names in this paper. Notice that our analysis is
limited to local variables although there are also other types of
identifiers including class names, class field (class or instance
variable) names and method names. Since classes, fields and
methods might be specified in the design phase, programmers
would not be able to decide their names freely. On the other
hand, names of local variables are almost always given by
programmers at their own discretion during the programming
phase. In order to support the programming activity from the
perspective of naming, we decided to analyze local variables in
this paper; a further analysis involving other types of identifiers
is our future work.

A. Pair of Highly-Similar (Confusing) Names

In general, a local variable should have an proper name to
express its role. However, when two or more local variables
are declared in a method, we may need to take care of
their similarities as well. If there is a pair of highly-similar
names, one variable is confusable with another variable. Such
a confusing pair might cause a misuse of variable which is a
fault creation, or an overlooking of fault.

Figure 1 presents an example of code fragment. In the
figure, the program logic is simple and each local variable
has a well-described name. However, it does not look a
“simple” code; there is a pair of local variables with long
and similar (confusing) names—“distanceBetweenAbscissae”
and “distanceBetweenOrdinates.” We might make a mistake
when we copy and paste some statements or when we use

.....
distanceBetweenAbscissae = firstAbscissa – secondAbscissa;
distanceBetweenOrdinates = firstOrdinate – secondOrdinate;
if ( distanceBetweenAbscissae ∗ distanceBetweenAbscissae

> distanceBetweenOrdinates ∗ distanceBetweenOrdinates ){
.....

Fig. 1. A code fragment having a pair of local variables with confusing
names.

the code completion function on an integrated development
environment such as Eclipse.

Now we define highly-similar names as “confusing” names.
Hereinafter, we will call a pair of local variables with confus-
ing names as a pair of “confusing local variables” or simply
“confusing variables.”

B. Levenshtein Distance

To evaluate the degree to which two names are confusing,
we will leverage the Levenshtein distance between them in
this paper.

Basically, the notion of confusing names has two different
points of view: the string similarity and the semantic similarity.
For example, “levelOfStrength” and “levelOfStrangeness” are
similar strings, but their meanings are not close. We also
tried evaluating the semantic similarity by using the Word2Vec
[11]. However, we faced a difficulty to appropriately handle
abbreviated words in the semantic analysis. For example, we
have to appropriately expand “idx” to “index” so that the
Word2Vec can process it. Hence, we decided to start tackling
the string similarity in this paper; we would like to perform
a further analysis focusing on the semantic similarity as our
important future work.

The Levenshtein distance between two strings is the min-
imum number of the character editing operations which are
required to change one string to another string, where a
character editing operation is one of the following operations:
(1) a single character deletion, (2) a single character insertion,
and (3) a single character substitution. For example, the
Levenshtein distance between “first” and “last” is 3 because
“first” f→l−−→ “lirst” i→a−−→ “larst” delete r−−−−−→ “last.”

C. Normalized Levenshtein Distance

Although the Levenshtein distance can be a measure of
string similarity, it has an unsuitable feature to evaluate the
degree to which two names are confusing. Let us take the
following two pairs for example:

1) “get” and “set” ,
2) “dXAxisTitleThickness” and “dYAxisTitleThickness” .

Both pairs have the same Levenshtein distance, 1. However,
pair 2) seems to be more confusing than pair 1). Since such an
abnormality is from the difference of their string lengths, we
propose the following normalized Levenshtein distance (NLD)
between two strings (local variables’ names) s1 and s2 as our
measure of how confusing these two variables are:

NLD(s1, s2) =
LD(s1, s2)

max{ λ(s1), λ(s2) }
, (1)

where LD(s1, s2) is the (original) Levenshtein distance, and
λ(·) signifies the length of the corresponding string.

We get the following evaluations: NLD(“get”, “set”) = 1/3
and NLD(“dXAxisTitleThickness”, “dYAxisTitleThickness”)
= 1/20. That is to say, the latter pair is evaluated as more
similar than the former pair.



IV. EMPIRICAL STUDY

To examine the impact of confusing local variables on the
fault-proneness of methods, we conduct an empirical study.

A. Dataset

We analyze five major open source projects shown in Table
I. In the table, “# files” signifies the number of source files
surveyed, excluding test programs and documents1. The main
reasons why we targeted these projects are as follows. 1)
Their source files are written in Java; 2) Their source files are
maintained by using the Git; 3) Their fault data are available.

The requirements 1) and 2) are from our data collection
tools. The requirement 3) is essential to the fault-prone method
analysis. In this study, we leverage the fault data from the tera-
PROMISE repository2.

B. Procedure

We conduct our data collection and analysis in the following
procedure.

1) Extract methods and their local variables from Java
source files.
By analyzing Java source files using Eclipse JDT, we
extract methods and their local variables from source
files. In this study, we consider method parameters to
be local variables as well.
Notice that we exclude the following methods since we
cannot compute NLD for variable pairs: (a) a method
having no local variable, (b) a method having only one
local variable, and (c) an abstract method.

2) Get NLD for each method.
In each method, compute NLD for each pair of local
variables. Since our main focus is on whether the
presence of confusing variable pair is related to the
fault-proneness of the method or not, we adopt the
minimum NLD (the highest similarity) as the measure
of the method when there are two or more variable pairs.

3) Divide the method set into subsets by NLD, and compare
the fault-proneness among subsets.
To compare methods according to their NLD, we divide
the set of methods into four subsets G1, G2, G3 and
G4, based on the quartile of NLD distribution, where

• G1: NLD ≤ 25 percentile;
• G2: 25 percentile < NLD ≤ median;
• G3: median < NLD ≤ 75 percentile;
• G4: 75 percentile < NLD.

Then, we compute the rate of faulty methods in each
subset (fault rate: FR) and compare FR values among
Gi (for i = 1, 2, 3, 4). In this paper, we use FR as our
measure of the fault-proneness of method.
Notice that the fault data of the surveyed projects from
the tera-PROMISE repository is at file-level. To detect
faulty methods, we checked which methods are changed
through fault fixes.

1We omitted source files whose paths contain “test” or “documentation.”
2http://openscience.us/repo/

TABLE I
NUMBERS OF SURVEYED FILES, METHODS AND LOCAL VARIABLES.

project # files # methods # local variables
Apache Tomcat 1, 726 7, 051 32, 139
BIRT 8, 232 34, 027 156, 786
Eclipse JDT UI 10, 452 18, 571 87, 568
Eclipse Platform UI 4, 272 15, 937 65, 160
SWT 1, 731 11, 157 64, 770
total 26, 413 86, 743 406, 423

C. Results

Figure 2 and Table II present the FRs in G1 – G4 for each
project. From Fig. 2, we see monotonically decreasing trends
of FR from G1 to G4 in four out of five projects except for
SWT: FR becomes lower as NLD gets larger (from G1 to G4).
A method category with larger NLD is the set of methods
having only pairs of local variables whose names are less
similar each other. Thus, a method having only non-confusing
local variable pairs is less fault-prone. In other words, a
method having a pair of more confusing local variables is
more likely to be faulty. FR values change from G1 (with the
most confusing pairs) to G4 (with the least confusing pairs)
as follows.

• Apache Tomcat: FR in G1 is about 2.6 times higher than
that in G4;

• BIRT: about 1.4 times higher;
• Eclipse JDT UI: about 1.6 times higher;
• Eclipse Platform UI: about 1.5 times higher.
SWT has a different trend: FR in G2 is higher than that

in G1. But it shows a monotonic decrease from G2 to G4 as
well, and moreover, FR in G1 is about 1.1 times higher than
that in G4. Thus, it still seems to be that a method having a
confusing local variable pair tends to be more fault-prone.

D. Discussions

In order to examine the relationship between the presence
of confusing local variables in a Java method and the fault-
proneness of the methods, we divided the method set into four
subsets G1 – G4 by NLD, and compared their FRs. G1 is the
set of methods having the most confusing local variable pairs,
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Fig. 2. Fault rates (FRs) in method categories.



TABLE II
FAULT RATES (FRS) IN METHOD CATEGORIES.

project G1 G2 G3 G4

0.1815 0.1387 0.0981 0.0694Apache Tomcat (
399
2198

) (
208
1500

) (
162
1652

) (
118
1701

)
0.2035 0.2006 0.1565 0.1409BIRT (
1827
8977

) (
1635
8148

) (
1400
8942

) (
1122
7960

)
0.3319 0.2845 0.2499 0.2144Eclipse JDT UI (
1825
5499

) (
1208
4246

) (
1151
4605

) (
905
4221

)
0.3258 0.2906 0.2294 0.2193Eclipse Platform UI (
1303
4000

) (
1266
4357

) (
831
3622

) (
868
3958

)
0.2439 0.2857 0.2430 0.2183SWT (

714
2928

) (
760
2660

) (
761
3132

) (
532
2437

)

and the confusing level decreases in the order of G1 to G4.
As shown in Fig. 2, the FR tends to get lower as the confusing
level decreases from G1 to G4: four out of five projects except
for SWT show monotonic decreases. While SWT presents a
different tendency, it also has a monotonically decreasing trend
from G2 to G4, and the FR in G1 is still higher than G4.

By comparing FR values, we see that methods in G1 are
about 1.1 to 2.6 times more fault-prone than ones in G4. To
check the difference in FR values between G1 and G4, we
additionally performed χ2 test for each project data. As the
results, we confirmed that their differences in all projects are
statistically significant at a 5% significance level3. Thus, a
method having a pair of confusing variables is more likely to
be faulty than a method having only non-confusing pairs.

If there is a pair of confusing (highly-similar) local variables
in a method, one variable may be confusable with another
variable. Such a confusable state may be related to a lack
of clearness or readability in the program, and causes a fault
creation or an overlooking of fault. However, the appearance
of such a confusing variable pair may be related to the size
or complexity of the program as well. That is to say, as
programs become larger or more complex, programmers tend
to use more variables, so the possibility of appearing such
a confusing variable pair increases. Thus, we also compared
NLD with the conventional size metric (lines of code: LOC)
and the code complexity metric (cyclomatic complexity [12]:
CC)—we built a fault-prone method prediction model using
NLD together with LOC and CC for each project. If NLD is
worthless, it cannot contribute to the prediction because LOC
and CC work dominantly.

Here we used the random forest as our prediction model
[13] since it is one of the most promising models for predicting
fault-prone programs [14]. In a random forest, we can evaluate
the importance of each variable (metric) by Breiman’s method
[13]. Table III shows the importance values computed for three
metrics. As the results, while NLD does not have the highest

3For each project, we performed a χ2 test on the null hypothesis that
the FR in G1 is equal to the FR in G4.The results are: (Apache Tomcat)
χ2 = 103.90, df = 1, p < 2.2 × 10−16; (BIRT) χ2 = 114.41, df = 1,
p < 2.2×10−16; (Eclipse JDT UI) χ2 = 162.58, df = 1, p < 2.2×10−16;
(Eclipse Platform UI) χ2 = 113.09, df = 1, p < 2.2 × 10−16; (SWT)
χ2 = 4.73, df = 1, p = 0.02968.

TABLE III
IMPORTANCE VALUES OF METRICS IN EACH PROJECT’S RANDOM FOREST.

metric
project NLD LOC CC
Apache Tomcat 217.7 278.4 171.9
BIRT 722.2 1065.5 535.4
Eclipse JDT UI 546.1 882.3 395.0
Eclipse Platform UI 479.9 786.7 352.3
SWT 411.0 580.9 448.8

importance, it has higher value than CC except for SWT.
Although the importance of NLD in SWT is less than that
of CC, they seem to be at almost the same level. Therefore,
NLD would be one of useful metrics for predicting fault-prone
methods, and it is equivalent to or better than CC in predicting
fault-prone methods.

Since metric LOC showed the highest importance in the
random forest models, we can say again that a larger method
tends to be more fault-prone, which has been supported by
the previous work (e.g., [15]). This result may be related to
the number of local variables as well. That is to say, a larger
method is likely to have more local variables within the body,
and then the importance of non-confusable naming may get
higher. To examine the relationship between NLD and LOC,
and to analyze the impact of confusing variable names on the
method’s fault-proneness in more depth, we plan to perform
a further analysis focusing on the details of local variables’
properties such as their dependent relationships in the future.

E. Threats to Validity

Since our data analysis is limited to five open source
projects, it may be a threat to validity regarding the generality
of our results. However, the granularity of our data analysis
is at method-level and local variable-level, so we had a lot
of samples—86, 743 methods and 406, 423 local variables as
shown in Table I. Moreover, to mitigate the threat, we selected
popular projects in which many developers are involved. To
assure a higher generality of our findings, we will collect more
data and analyze them in the future.

Our data are also limited to Java programs. This limitation
is from our data collection tool which we developed to
extract local variable’s features (names and scopes). Since the
notion of local variable is common to modern programming
languages, the difference in the programming language may
not be a serious threat to validity. To clarify the impact of
language difference, we plan to analyze programs written in
other languages as our future work.

Our metric NLD focuses only on the highest similarity
between two local variables’ names within a Java method.
Thus, other properties in regard to local variables are not taken
into account: the number of local variables, their dependent
relationships, etc. Such other properties might also affect the
fault-proneness of Java methods. Although we analyzed the
effect of NLD together with LOC (method size) anc CC
(method complexity) using the random forest, we need to



perform a further analysis using not only these three metrics
but also other local-variable-related metrics in the future.

V. CONCLUSION

We focused on confusing (highly-similar) names of local
variables in a Java method, and proposed to quantify the con-
fusing level by the normalized Levenshtein distance (NLD).
Then, we conducted an empirical study with five major open
source software products, and proved that a Java method hav-
ing a pair of confusing local variables is about 1.1 to 2.6 times
more fault-prone than a method having only non-confusing
ones. Moreover, we compared a power of NLD with popular
code metrics in terms of the fault-prone method prediction
through the random forest, and showed that NLD can probably
outperform the cyclomatic complexity. Therefore, focusing on
pairs of confusing local variables would be one of beneficial
points of view for enhancing the code quality management.

Our future work includes: 1) a further analysis focusing on
not only the string similarity but also the meaning closeness
between local variables’ names; 2) a further investigation on
why the appearance of highly-similar variables relates with a
fault creation or an overlooking of fault.
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