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Abstract—To enhance the efficiency of software testing, re-
searchers have studied various test case prioritization (TCP)
methods. A topic model-based TCP is one of the promising
methods, which expresses test cases by topic vectors and pri-
oritizes them in the order such that the set of already-prioritized
test cases have the maximum dispersion in the vector space.
However, the topic model is not the only option available for
vectorizing test cases. Moreover, the distance metric in the vector
space and the scheme to prioritize test cases (the way to find the
test case that is the farthest from the set of already-prioritized
ones) also have some available options. Because the combinations
of the above options have not been well-discussed in the past,
this paper conducts a comparative study of 36 TCP methods,
which are the combinations of (1) three vectorization methods,
(2) three distance metrics, and (3) four prioritization schemes
(36=3x3x4). The empirical results show the following findings.
The choice of the vectorization method has a significant impact
on the testing efficiency: a promising option is Doc2Vec (PV-
DBoW). The combination with the distance metric may also
be impactful: a useful combination is Doc2Vec (PV-DBoW) and
Euclidean distance. The third aspect, i.e., the choice of the scheme
to find the farthest test case, is not always influential.

Index Terms—testing, test case prioritization, vectorization

I. INTRODUCTION

Software testing is an essential activity to ensure the quality
of the software system under development and maintenance.
Developers prepare various test cases and execute them to
minimize the risk of missing faults that lie latent in their
software system, the system under test (SUT) [1]. Although
it is ideal for executing a great variety of test cases, a testing
activity sometimes becomes expensive and time-consuming
[2], [3]. To overcome such a challenge, researchers have
studied various approaches for promoting the testing efficiency
[4]. Test case prioritization (TCP) [5]–[7] is one of the most
useful testing approaches.

TCP approaches seek to find the ideal execution order of
test cases to detect more faults as early as possible. The
prioritization aims at maximizing the expected number of
detected faults even if the testing is halted at an arbitrary
point. Various TCP approaches have been proposed in the
past. For example, Jeffrey and Gupta [8] proposed to utilizes
the program slicing technique to link a modified part with the
related test cases and prioritize test cases by using the slice-
based data. Carlso et al. [9] leveraged a clustering approach

together with code coverage information and code complexity
metric data to prioritize test cases. Kim and Porter [10]
focused on the test history (the results of prior test executions)
and proposed to quantify the expectation that a test case
causes a failure at the next test. Moreover, there have been
studies utilizing the genetic algorithm (GA) that seeks the best
execution order of test cases in which their fitness functions
(evaluation functions) use the above test-related data [11].

Although the above TCP approaches are useful, they require
the test case execution history or advanced program analysis
(e.g., the program slicing), which may not always be easy
to collect or perform [12]. If we add new test cases to the
test suite, we cannot obtain the test history of them. When
SUT is a large-scale system, it is highly expensive and time-
consuming to perform an advanced program analysis for all
programs included in the SUT. Therefore, researchers have
recently studied light-weight static TCP approaches as well,
which require neither the execution of test cases nor an
advanced program analysis like the program slicing [13]–
[16]; A recent approach focuses on the textual data of test
cases [13], which evaluated the similarity between test cases
by using the string edit distance (Manhattan distance) and
prioritized test cases through maximizing the diversity of
test cases [14], [15]. Thomas et al. [16] proposed a more
sophisticated approach that is based on the topic model [17],
[18]. In [16], Thomas et al. performed a topic analysis for all
test cases and expressed test cases by the corresponding topic
vectors. Then, they proposed to prioritize test cases through
maximizing the diversity of test cases in the topic vector space.

Although Thomas et al. empirically proved that the topic
vector-based approach is useful for prioritizing test cases
effectively, we have a simple question “How does it work
when we replace the vectorization method with another one?”
In the world of natural language processing, the Doc2Vec
[19]–[21] has become a promising method for producing a
vector representation of a document in recent years. That is,
a Doc2Vec-based approach may be a better option for the
vectorization-based static TCP methods.

Moreover, we have some options for the distance metric as
well. To quantify the distance between test cases, we need to
define the distance metric in the vector space. Although the
previous work [16] used the Manhattan distance, the use of



different distance metrics may have an impact on the TCP
performance. Furthermore, we also need to focus on the way
of maximizing the diversity of test cases. During the test case
prioritization process, the following two steps are iterated: (a)
find the test case that is the farthest from the set of already-
prioritized test cases, and (b) append the farthest test case to
the set of already-prioritized ones. Here, to decide the farthest
test case, we have to define the distance between a single
test case and a set of test cases. The clustering methods [22]
provide some options for such distance computation.

Hence, we can consider the following three aspects that
compose a vectorization-based static TCP method: (1) the
vectorization method, (2) the distance metric, and (3) the
prioritization scheme (the way to find the test case that is the
farthest from the set of already-prioritized ones). To the best
of our knowledge, the combinations of the above three aspects
have not been well-discussed. Thus, toward a better static TCP
method, we conduct a comparative study and report the results
in this paper. The key contributions of this paper include:

• We report the performances of 36 vectorization-based
static TCP methods, which are combinations of

– Three vectorization methods: topic model, Doc2Vec
(PV-DM), and Doc2Vec (PV-DBoW),

– Three distance metrics: Manhattan distance, Eu-
clidean distance, and angular distance, and

– Four prioritization schemes: single linkage-based
scheme, complete linkage-based scheme, average
linkage-based scheme, and Ward’s method-based
scheme.

• We empirically proved that the choice of the vectorization
method has a significant impact on the testing efficiency,
and the combination with the distance metric may also be
impactful: promising options are Doc2Vec (PV-DBoW)
and Euclidean distance. The third aspect, i.e., the choice
of the scheme to find the farthest test case, did not always
become influential.

The remainder of this paper is organized as follows. Section
II describes the TCP method of interest and the details of the
above three aspects that compose a TCP method. Section III
presents the results of our comparative study of vectorization-
based TCP methods. Finally, Section IV concludes the paper
and outlines directions for future work.

II. VECTORIZATION-BASED STATIC TEST CASE
PRIORITIZATION

In this section, we briefly explain the TCP method of interest
(Sects. II-A, II-B) and describe the details of three aspects
that compose a TCP method: (1) the vectorization method
(Sect. II-C), (2) the distance metric (Sect. II-D), and (3) the
prioritization scheme (Sect. II-E). Then, we summarize the
combinations of their options that are the subjects of our
comparative study (Sect. II-F).

A. Static TCP and Its Evaluation Criterion

We present a formal definition of the static TCP.

TABLE I
SIMPLE EXAMPLE OF RELATIONSHIPS AMONG TEST CASES AND

DETECTABLE FAULTS (FAULT MATRIX)

Test Case
t1 t2 t3 t4 t5

F1 ✓ ✓
Detectable F2 ✓

Fault F3 ✓
F4 ✓ ✓

Def. 1 (Static test case prioritization problem):
Given a test suite T , which consists of n(> 0) test cases ti

(for i = 1, 2, . . . , n). Let PT be the set of all permutations
of T . The static test case prioritization seeks to find the
permutation PTo ∈ PT such that

∀PT (∈ PT ) f(PTo) ≥ f(PT ) , (1)

where f(·) is the evaluation function of a permutation; The
higher the value, the better the permutation, in terms of the
test case prioritization. □

For example, when we have test suite T = { t1, t2, t3 }, PT
consists of six permutations: PT = { (t1, t2, t3), (t1, t3, t2),
(t2, t1, t3), (t2, t3, t1), (t3, t1, t2), (t3, t2, t1) }. The static TCP
is to find the best permutation in these six candidates, which
has the highest evaluation value computed by f(·).

According to previous studies of TCP methods [4], [16], we
adopt the Average Percentage of Fault-Detection (APFD) [7]
as our evaluation function in Eq.(1).

Def. 2 (Average Percentage of Fault-Detection (APFD)):
Given a permutation of the test suite, PT . Suppose m(> 0)
different faults are detectable by executing all test cases in
PT . The Average Percentage of Fault-Detection (APFD) of
PT is defined as

APFD(PT ) = 1− 1

nm

m∑
i=1

TFi +
1

2n
, (2)

where TFi = k if and only if the i-th fault is first detected by
executing the k-th test case in PT . □

To demonstrate a TCP evaluation using the APFD, we
consider an example shown in Table I, where we have five
test cases T = {t1, t2, t3, t4, t5} and four detectable faults
{F1, F2, F3, F4}. The checkmarks (✓) indicate that the corre-
sponding fault is detectable by the corresponding test case(s)1;
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(a) PTa (b) PTb

Fig. 1. Comparison of fault detection processes between PTa and PTb.

1A test case can find at most one “failure.” After a fail of a test, we analyze
the SUT and detect the fault causing the failure. In the analysis, we may detect
two or more faults. Test cases t2 and t5 in Table I correspond to such cases.



For example, F1 is detected when we execute t2 or t4.
Now we consider two permutations PTa and PTb: PTa =

(t1, t2, t3, t4, t5), and PTb = (t2, t5, t1, t3, t4). Fig. 1 shows
the differences between the fault detection processes of PTa

and PTb. In the figure, the horizontal axis signifies the
percentage of executed test cases. Because we have five test
cases in this example, one execution of a test case corresponds
to a 0.2 increase on the axis. The vertical axis indicates the
percentage of detected faults, and it increases by 0.25 with
every detection because we have four detectable faults in total.
The earlier the curve grows, the better the TCP is. Hence, TPb

is better than TPa in terms of early fault detection.
The APFD is the area under the curve shown in Fig. 1,

and can be a reasonable evaluation value of the corresponding
TCP method. By Eq.(2), we obtain the following evaluations:

• APFD(PTa) = 1− 1
20 (2+5+2+1)+ 1

10 = 0.6, and
• APFD(PTb) = 1− 1

20 (1 + 2 + 1 + 2) + 1
10 = 0.8,

i.e., we get the relationship APFD(PTa) < APFD(PTb),
which indicates that TPb is better than TPa.

B. Steps of Vectorization-Based Static TCP

We can perform a vectorization-based static TCP in the
following steps.

1) Vectorization of Test Cases:
As the first step, we vectorize our test cases by using
a natural language processing (NLP) technique (Fig. 2).
We describe the options for the vectorization techniques
in Sect. II-C. Hereafter, we denote the vector corre-
sponding to the test case ti by vi (for i = 1, . . . , n).

2) Computation of Distances between Test Cases:
For each pair of test cases (ti, tj), we compute the
distance between them in the vector space, d(vi,vj).
Because there are some options for the distance metric,
we elaborate them in Sect. II-D.

3) Prioritization of Test Cases:
a) At first, we find the test case tx that is the farthest

from the others {ti|i ̸= x}, and then we assign
the highest priority to tx. In this paper, we denote
the set of vectors corresponding to the already-
prioritized test cases by A. That is, right after the
above selection, we have A = {vx}.
To determine the farthest test case, we need to
define the distance between a single vector vi and
a set of vectors A; We denote the distance between
them by D(vi, A). Because there are some options
for D, we elaborate them in Sect. II-E.
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Fig. 2. Vectorization of test cases.
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A = {v2} A = {v2,v5} A = {v2,v5,v1}
farthest: v5 farthest: v1 farthest: v3

Fig. 3. Example of the TCP process.

b) After that, we single out the test case ty , which is
the farthest from A, s.t. ∀i D(vy, A) ≥ D(vi, A).
Then, we append vy to A, i.e., A← A ∪ {vy}.

c) By iterating the above step b), i.e., a selection of
the farthest test case and an update of A, we obtain
the prioritized set of test cases.

□
Fig. 3 illustrates an example of the prioritization process.

Suppose v2 is the farthest from the others, and we start the
TCP with A = {v2}. Next, we find that v5 is the farthest from
A, and then we update A as A = {v2,v5}. After that, we find
v2 is the farthest from A, and we obtain A = {v2,v5,v1}.
By iterating the similar steps, we prioritize the test cases.

C. Vectorization Method

We describe two primary NLP techniques to obtain a vector
representation of a document. In the context of this study, a
document corresponds to a test case.

1) Topic Model: The topic model [18] is a model for ana-
lyzing the latent semantic of a document. The model considers
some topics and estimates the probability distributions which
link the terms (words) with the topics. In the topic model, one
word may belong to two or more topics. Hence, one document
may have two or more topics, i.e., a mix-up of topics. Fig. 4
presents a simple image structure of a topic model in which
we have four documents, eight words, and three topics. For
example, document-1 contains three words w1, w2, and w3.
Because these words belong to topic-1 or topic-2, we regard
that document-1 is a mix-up of topic-1 and topic-2.

Since we cannot observe the topics directly, we estimate the
relationship between each word and each latent topic by using
a probability distribution. One of the most popular methods is
the latent Dirichlet allocation (LDA) [23]–[25], which uses
the Dirichlet distribution; the LDA performs the maximum
likelihood estimation to associate a word with a topic. By using
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Fig. 4. Simple image of the topic model.



the probabilistic model of topics, we can quantify the weight
of each topic in each document. In other words, “topics”
correspond to “soft clusters,” and the topic modeling is a soft
clustering of documents. The weight of a topic in a document
expresses the degree that the document belongs to the topic.

When we consider K(> 0) topics, we can obtain K-
dimensional vector for a document in which the i-th element
indicates the weight of the i-th topic in the document (for
i = 1, . . . ,K). We use such a vector as a vector representation
of a document, i.e., a test case in our context. In the previous
work [16], the topic model (built by the LDA) was used to
vectorize test cases.

2) Doc2Vec: The Doc2Vec [19] is one of the most promis-
ing NLP techniques to obtain a vector representation of a
document [20]. For a pair of similar documents, a well-trained
Doc2Vec produces a pair of vectors that are close to each
other in the vector space. The Doc2Vec is an extension of the
Word2Vec [26] technique that vectorizes a word. Both of these
techniques utilize a neural network that learns words.

Fig. 5 presents a simple image structure of a neural network
used in a Word2Vec model. Suppose we have a training
sentence “I play tennis every weekend,” and we focus on
the word “tennis.” As a training of the neural network, we
input one word which appears around “tennis” (e.g., “play”)
and expect the neural network to output “tennis.” Through
the training using various sentences, we update the weights
between layers iteratively. After the training, we look at the
weight between the i-th unit of the input layer and the j-th unit
of the hidden layer, wij . These weights form a map of the word
onto a multidimensional space whose number of dimensions
is the unit count in the hidden layer. We use the vector of
weights for the i-th unit, wi = (wi1, wi2, · · · , wij , · · · )T , as
a vector expression of the i-th word2. This vector is referred
to as a “distributed representation” of the word. Although it
is hard to interpret the meaning of each element of the vector,
the combination of the elements can form a well-produced
map of the semantic relationship among words. If two words
semantically similar to each other, the trained neural network
would make a similar output for either of these two words.
That is, the weight vectors for these two words are also close
to each other. Notice that the above example of the learning
is called Continuous Bag-of-Words (CBoW) model; There is
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Fig. 5. Simple image of the neural network learning a word.

2Symbol T signifies the transpose of a vector.

another learning model called Skip-gram in which the focused
word (“tennis”) is used as the input, and its neighborhood word
(e.g., “play”) is expected as the output of the neural network.

The Doc2Vec uses not only the words in a document but
also the document ID to extend the Word2Vec. There are two
different learning models for Doc2Vec.

• Paragraph Vector Distributed Memory (PV-DM):
The PV-DM is similar to the CBoW model of the
Word2Vec. The inputs of the neural network are the
document ID and the words appearing in the document.

• Paragraph Vector Distributed Bag-of-Words (PV-DBoW):
PV-DBoW is similar to the Skip-gram model of the
Word2Vec. It uses the document ID as the input. Notice
that PV-DBoW does not take into account the order of
words in the sentence.

In this paper, we denote the Doc2Vec models trained by
PV-DM and PV-DBoW by Doc2Vec-DM and Doc2Vec-DBoW,
respectively. These models can become our options for the
vectorization method of test cases as well as the topic model.

D. Distance Metric

Next, we describe metrics to quantify the distance between
two vectors, i.e., two test cases. In this subsection, let K be the
dimension number of vector, and vi = (vi1, vi2, . . . , viK)T be
the corresponding vector of test case ti (for i = 1, 2, . . . , n).

1) Manhattan Distance: In the previous work [16], Thomas
et al. used the Manhattan distance:

d(vi,vj) =

K∑
k=1

|vik − vjk| . (3)

The reason why they used the Manhattan distance is due
to the comparison conducted in their empirical study. They
compared the topic model-based TCP method with the conven-
tional string similarity-based method [13]. Because the string-
based method had used the Manhattan distance and it is also
applicable to the topic model-based TCP method, Thomas et
al. adopted it as the distance metric.

2) Euclidean Distance: As we explained in Sect. II-B, we
express test cases by multidimensional vectors and prioritize
them while considering the distances among them. The prior-
itization procedure has a similar characteristic3 to a clustering
of data [22]. Because the Euclidean distance is widely used in
clustering methods, it is natural that we consider the Euclidean
distance as an option for the distance metric in this study:

d(vi,vj) =
√

(vi − vj)T (vi − vj) . (4)

3) Angular Distance: In the NLP studies, the cosine simi-
larity is a well-known measure of the closeness between two
feature vectors [27]:

CosSim(vi,vj) =
vT
i vj√

vT
i vi

√
vT
j vj

. (5)

3Although a clustering method usually seeks to find the nearest data point,
we try to find the farthest one.



Since our vectorization methods for test cases are NLP tech-
niques, we may consider an inverted cosine similarity to be an
option for the distance metric. Although the inverted measure
“1 − CosSim(vi,vj)” evaluates a dissimilarity between two
vectors, we cannot use it as a distance metric because it
does not satisfy the triangle inequality4, one of the necessary
conditions of a distance metric. Thus, we use the following
angular distance instead:

d(vi,vj) =
1

π
arccos(CosSim(vi,vj)) . (6)

This metric focuses on the angle between the vectors rather
than the cosine value because arccos(cos θ) = θ.

E. Scheme to Find the Farthest Test Case

When one or more test cases are already prioritized, a static
TCP method seeks to find the test case that is the farthest from
the set of the already-prioritized ones (see step 3 in Sect. II-B
and Fig. 3). To this end, we need to define the distance between
a single vector vi and a set of vectors A, i.e., D(vi, A);
Using D(vi, A), we can find the farthest vector vy such that
∀i D(vy, A) ≥ D(vi, A). Because the process of finding the
farthest vector is essentially identical5 to a clustering of data,
we leverage the following representative methods in this study.

1) Single Linkage Method: For a vector vi ( ̸∈ A), the
single linkage method focuses on the vector vc (∈ A) that
is the closest to vi and considers d(vi,vc) to be the distance
between vi and A. That is, we have

D(vi, A) = min
vc∈A

[ d(vi,vc) ] , (7)

and find the farthest test case using Eq.(7). For example,
when we have vi and A = {v1,v2,v3} shown in Fig. 6 (1),
D(vi, A) is the distance between vi and its closest one within
A, i.e., d(vi,v2).

In this paper, we call the above scheme as the single
linkage-based scheme. Thomas et al. used this scheme in their
empirical work [16].
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Fig. 6. Simple examples of D(vi, A).

4Suppose we have three vectors v1,v2, and v3, and CosSim(v1,v2) =
cos(π/3) = 1/2 and CosSim(v1,v3) = CosSim(v3,v2) = cos(π/6) =√
3/2. If we use d′(vi,vj) = 1−CosSim(vi,vj), we obtain d′(v1,v2) =

1− 1/2 = 1/2 and d′(v1,v3) = d′(v3,v2) = 1−
√
3/2 = (2−

√
3)/2.

Here, d′(v1,v3) + d′(v3,v2) = 2 −
√
3 > 1/2. That is, the triangle

inequality d′(v1,v2) ≤ d′(v1,v3) + d′(v3,v2) is not satisfied.
5In the case of clustering, we seek to find the nearest vector rather than the

farthest one.

2) Complete Linkage Method: In contrast to the single
linkage method, the complete-link method looks at the farthest
vector vf (∈ A) and defines the distance as:

D(vi, A) = max
vf∈A

[ d(vi,vf ) ] . (8)

For example, when we have vi and A shown in Fig. 6 (2),
D(vi, A) is the distance between vi and its farthest one within
A, i.e., d(vi,v1). Hereafter, we refer to the prioritization
scheme using Eq.(8) as the complete linkage-based scheme.

3) Avarage Linkage Method: The average linkage method
uses the following definition of D, which is the average of
distances of all pairs:

D(vi, A) =
1

|A|
∑
va∈A

d(vi,va) . (9)

For example, when we have vi and A shown in Fig. 6 (3),
D(vi, A) is the average of d(vi,v1), d(vi,v2), and d(vi,v3).
It is also the distance between vi and the mean vector of
{v1,v2,v3} (v in Fig. 6 (3)). We call the prioritization scheme
using Eq.(9) as the average linkage-based scheme.

4) Ward’s Method: Ward’s method has a different perspec-
tive from the above three methods, and it focuses on the
variance within the cluster. Let S(A) be the sum of squared
deviation within the set A:

S(A) =
∑
vs∈A

d(vs,v)
2 , (10)

where
v =

1

|A|
∑
vs∈A

vs .

If we append a vector vi to A, the above sum of squared
deviation increases. Ward’s method considers the increment
to be the distance between vi and A:

D(vi, A) = S(A ∪ {vi})− S(A) . (11)

We refer to the prioritization scheme using Eq.(11) as Ward’s
method-based scheme.

F. Available TCP methods: Combinations of Aspects

In this section, we have described three aspects of the
vectorization-based static TCP methods. Here, we have 36
combinations of these aspects because

1) the vectorization method has three options: Topic model,
Doc2Vec-DM, and Doc2Vec-DBoW;

2) the distance metric has three options: Manhattan dis-
tance, Euclidean one, and the angular one;

3) the prioritization scheme has four options: the single
linkage-based scheme, the complete linkage-based one,
the average linkage-based one, and Ward’s method-
based one.

Table II shows these combinations. The previous work [16]
used the combination “Topic model / Manhattan distance /
single linkage-based scheme” (T-m-S). We compare it to the
remaining 35 combinations in our comparative study.



TABLE II
COMBINATIONS OF THREE ASPECTS FORMING TCP METHODS

Scheme Vectorization Method
Distance to Find [T] Topic [Dm] [Db]
Metric the Farthest Model Doc2Vec-DM Doc2Vec-DBoW

[S] single T-m-S∗ Dm-m-S Db-m-S
[m] [C] complete T-m-C Dm-m-C Db-m-C
Manhattan [A] average T-m-A Dm-m-A Db-m-A

[W] Ward T-m-W Dm-m-W Db-m-W
[S] single T-e-S Dm-e-S Db-e-S

[e] [C] complete T-e-C Dm-e-C Db-e-C
Euclidean [A] average T-e-A Dm-e-A Db-e-A

[W] Ward T-e-W Dm-e-W Db-e-W
[S] single T-a-S Dm-a-S Db-a-S

[a] [C] complete T-a-C Dm-a-C Db-a-C
angular [A] average T-a-A Dm-a-A Db-a-A

[W] Ward T-a-W Dm-a-W Db-a-W

(∗ Combination “T-m-S” is the conventional method used in the previous work [16].)

III. COMPARATIVE STUDY

We conducted a comparative study of 36 vectorization-based
static TCP methods shown in Table II. We report on our
comparative study and discuss the results in this section.

A. Aim and Dataset

Toward a better static TCP, this study aims to reveal the
effects of the vectorization method, the distance metric, the
scheme to find the farthest test case in the vector space, and
their combinations through the comparisons in terms of testing
efficiency (APFD value). To this end, we tackle the following
two research questions (RQs).

RQ1: Which TCP method would work well?
RQ2: Which options or combinations of them would be

useful in the static TCP method?
RQ1 is a straightforward question about our comparison. If

some TCP methods work better than the conventional method
(“T-m-S” in Table II), this comparative study is worth doing
for the promotion of the static TCP method. RQ2 seeks to
gain a more in-depth insight into the components (options) of
the vectorization-based static TCP methods. By analyzing the
impacts of the options and their combinations, we can advise
a promising TCP method for future testing.

Our dataset consists of five sets of test cases shown in
Table III, which is the same as the dataset used in [16]. They
are available at the Software-artifact Infrastructure Repository
(SIR) [28] and contain the source files of SUT, the test cases
(test programs), and the fault matrices that present the links
between a test case and the detectable faults.

All of the test programs included in the dataset are Java
programs. The test programs for Ant are JUnit6 test cases
that are descendants of junit.framework.TestCase. On
the other hand, although the test cases for Derby are also
Java programs, they adopt another style of testing other
than the JUnit framework. The test cases provide Java
code to run some tasks on Derby, and the test harness
org.apache.derbyTesting.functionTests.harness.RunTest
executes each test case and checks its result.

6https://junit.org/

TABLE III
SYSTEMS UNDER TEST, NUMBER OF TEST CASES AND NUMBER OF

FAULTS TO BE DETECTED

Software Version # of Test Cases # of Faults
Ant 1.5.3 105 6

Derby 10.1.2.1 98 7
Derby 10.1.3.1 106 9
Derby 10.2.1.6 120 16
Derby 10.3.1.4 53 26

B. Procedure

We conducted our comparative study in the following steps7.
1) Preprocessing of test cases: As with the previous work

[16], we perform the following tasks for each test case.
a) Remove non-alphabetical characters and the key-

words of the programming language (Java).
b) Split the identifiers by the camel case rule and the

snake case rule.
c) Stem all words and remove English stop words8.

2) Vectorization of test cases: We build the following three
types of vectorization models using the preprocessed
test cases: Topic model, Doc2Vec-DM, and Doc2Vec-
DBoW. We use LdaModel class and Doc2Vec class
provided in gensim library of Python [25] for the
model construction. To mitigate a threat to the construct
validity caused by the random seed setting during the
model construction, we iterate the model constructions
30 times9 while changing the random seed, i.e., we build
different 30 instances for each model.
Notice that we need to specify the dimension number of
the vector when we build the above models. According
to [16], we use n/2.5 as the dimension number where
n is the number of test cases; when n/2.5 is not an
integer, we round it to the nearest integer.

3) Evaluation of TCP methods: For each of the 36 TCP
methods (Table II), we compute the APFD as the eval-
uation value. Because we have 30 instances for each
vectorization model, we obtain 30 APFD values for each
method. To answer RQ1 and RQ2, we analyze the results
by checking the mean APFD and by performing the
analysis of variance (ANOVA).

C. Results

Table IV presents the mean APFD of each static TCP
method for each SUT. In the table, we emphasize the highest
value within each SUT by boldface and asterisk(∗).

As a result, the conventional TCP method used in [16], i.e.,
the combination “T-m-S,” did not show the best performance
for any SUT; the best TCP method having the highest mean
APFD varies among different SUT. Nonetheless, for all SUT,
the best TCP methods use Doc2Vec-DBoW or Doc2Vec-DM
as their vectorization methods. From the perspectives of the

7We developed tools to perform the preprocessing and the vectorization.
Our tools are available at http://se.cite.ehime-u.ac.jp/tool/SEAA2020/.

8We used the Natural Language Toolkit (https://www.nltk.org/).
9The number of iterations (30) is decided according to [16].



TABLE IV
EVALUATION VALUES: MEAN APFD VALUE FOR EACH COMBINATION

(a) Ant 1.5.3
[T] [Dm] [Db]

[S] 0.875 0.876 0.878
[m] [C] 0.872 0.877 0.884∗

[A] 0.872 0.871 0.877
[W] 0.872 0.870 0.877
[S] 0.873 0.876 0.878

[e] [C] 0.872 0.876 0.884∗

[A] 0.871 0.870 0.878
[W] 0.872 0.868 0.878
[S] 0.874 0.878 0.876

[a] [C] 0.873 0.878 0.883
[A] 0.873 0.876 0.871
[W] 0.873 0.874 0.867

(b) Derby 10.1.2.1
[T] [Dm] [Db]

0.977 0.974 0.977
0.974 0.974 0.978
0.976 0.974 0.977
0.976 0.974 0.976
0.976 0.974 0.977
0.978 0.974 0.979∗

0.977 0.974 0.977
0.977 0.974 0.977
0.978 0.974 0.975
0.975 0.974 0.975
0.976 0.974 0.974
0.976 0.974 0.974

(c) Derby 10.1.3.1
[T] [Dm] [Db]

0.885 0.871 0.851
0.866 0.871 0.865
0.880 0.870 0.851
0.878 0.869 0.851
0.870 0.871 0.851
0.887 0.871 0.870
0.885 0.871 0.851
0.888 0.871 0.851
0.880 0.870 0.857
0.876 0.891 0.978
0.894 0.870 0.928
0.894 0.863 0.979∗

(d) Derby 10.2.1.6
[T] [Dm] [Db]

0.967 0.968 0.996∗

0.961 0.956 0.964
0.967 0.960 0.994
0.965 0.962 0.985
0.966 0.966 0.996∗

0.966 0.956 0.972
0.960 0.957 0.996∗

0.961 0.957 0.996∗

0.968 0.996∗ 0.962
0.964 0.962 0.962
0.970 0.956 0.965
0.970 0.956 0.990

(e) Derby 10.3.1.4
[T] [Dm] [Db]

0.925 0.917 0.908
0.926 0.927 0.909
0.928 0.923 0.909
0.918 0.921 0.908
0.923 0.914 0.908
0.919 0.927 0.909
0.917 0.923 0.909
0.917 0.922 0.909
0.923 0.925 0.906
0.918 0.967∗ 0.909
0.926 0.925 0.910
0.928 0.925 0.910

TABLE V
NORMALIZED EVALUATION VALUES

Scheme Vectorization Method
Distance to Find [T] Topic [Dm] [Db]
Metric the Farthest Model Doc2Vec-DM Doc2Vec-DBoW

[S] single +0.148 −0.110 +0.237
[m] [C] complete −0.251 −0.120 +0.232
Manhattan [A] average −0.045 −0.311 +0.185

[W] Ward −0.134 −0.340 −0.010
[S] single −0.071 −0.145 +0.245

[e] [C] complete +0.061 −0.133 +0.382
Euclidean [A] average −0.147 −0.373 +0.252

[W] Ward −0.065 −0.433 +0.228
[S] single +0.123 +0.315 −0.327

[a] [C] complete −0.206 +0.483 +0.425
angular [A] average +0.100 −0.175 −0.143

[W] Ward +0.123 −0.238 +0.236

distance metric and the scheme to find the farthest test case,
there does not seem to be a common trend.

To compare an average performance of the TCP methods
across SUT, we normalize the raw APFD values to z scores10

within each SUT and compute the average of the z scores for
each TCP method. Table V shows the results. In the table, we
emphasize the z scores that are higher than the conventional
method (= 0.148) by boldface. As a result, most of the
methods using Doc2Vec-DBoW show better performances
than the conventional one (see the column of [Db]).

Next, to see the impacts caused by each of the three factors
(the vectorization method, the distance metric, and the scheme
to find the farthest test case) and the interactions among
them, we performed a three-way ANOVA. We present the
results in Table VI. In the table, the columns Df, SS, MS,
F, p, and η2 signify the degree of freedom, the sum of
squares, the mean square, the F statistic, the p-value, and
the effect size, respectively; we emphasize the effect size (η2)
corresponding to a large effect by boldface and an asterisk(∗),
and the one corresponding to a medium effect by a dagger(†),
respectively11.

As a result, the vectorization methods had large or medium
impacts on the testing efficiency for four out of five SUT;
Nonetheless, for the remaining SUT (c), the interaction be-

10For a raw score x, the corresponding z score is (x− x)/s where x and
s are the mean of all scores and the standard deviation of them, respectively.

11Cohen [29] presented the rules on magnitudes of effect size: the thresholds
of the large effect and the medium effect are 0.14 and 0.06, respectively.

tween the vectorization method and the distance metric had
the highest effect that is a medium-level impact. On the other
hand, the distance metric showed a medium-level effect only
for the SUT (c), and the prioritization scheme did only for
the SUT (a) and (d). As a consequence, although most of the
factors and their interactions showed statistically-significant
(α = 0.001) impacts on the testing efficiency, only a limited
number of them showed large or medium impacts.

D. Discussion

1) [RQ1] Which TCP method would work well?: In this
study, we compared 36 static TCP methods that are the com-
binations of the vectorization methods, the distance metric,
and the scheme to find the farthest test case. As a result,
although the best TCP method differs among SUT (Table
IV), the conventional topic model-based method was not the
best TCP method for any SUT, and Doc2Vec-based methods
showed better performances (Table V).

In Table V, although “Dm-a-C” has the highest z score,
there are also many negative scores in the row of [Dm]. On
the other hand, most of the z scores in the row of [Db] are
positive and better than the conventional one, including the
second-highest z score. Hence, it would be better to choose
“Db”, i.e., to use Doc2Vec-DBoW as the vectorization method
rather than the topic model.

Although the method using “Db” did not show the top
performance in Table V, the main reason would be that those
methods showed relatively-low APFD values for only the SUT
(e) (see Table IV). Because the SUT (e) has the fewest test
cases and the most faults among all SUT (Table III), it might
have a different trend from the other SUT.

Now, we answer to the RQ1 as follows. The TCP methods
using Doc2Vec-DBoW tend to work well. Although the per-
formance of the conventional topic model-based method is not
low, TCP methods using Doc2Vec-DBoW can outperform the
conventional one in many cases.

2) [RQ2] Which options or combinations of them would be
useful in the static TCP method?: We conducted a three-way
ANOVA for the APFD values to examine which options or
combinations of them have significant impacts on the testing
efficiency. Although the results varied among SUT, as shown



TABLE VI
RESULTS OF THE THREE-WAY ANOVA

(a) Ant 1.5.3
Source Df SS MS F p η2

Vector (V) 2 0.00434 0.00217 96.984 < 0.001 0.108†

Metric (M) 2 0.00002 0.00001 0.427 0.652 0.000

Scheme (S) 3 0.00498 0.00166 74.087 < 0.001 0.123†

V × M 4 0.00316 0.00079 35.338 < 0.001 0.078†

V × S 6 0.00312 0.00052 23.222 < 0.001 0.077†

M × S 6 0.00009 0.00001 0.634 0.703 0.002
V × M × S 12 0.00130 0.00011 4.83 < 0.001 0.032
Error 1044 0.02337 0.00002

(b) Derby 10.1.2.1
Vector (V) 2 0.00082 0.00041 45.101 < 0.001 0.071†

Metric (M) 2 0.00033 0.00017 18.286 < 0.001 0.029
Scheme (S) 3 0.00003 0.00001 1.003 0.391 0.002
V × M 4 0.00041 0.00010 11.249 < 0.001 0.036
V × S 6 0.00012 0.00002 2.262 0.036 0.011
M × S 6 0.00013 0.00002 2.339 0.030 0.011
V × M × S 12 0.00017 0.00001 1.51 0.114 0.014
Error 1044 0.00951 0.00001

(c) Derby 10.1.3.1
Vector (V) 2 0.02680 0.01339 9.131 < 0.001 0.011

Metric (M) 2 0.21720 0.10858 74.054 < 0.001 0.089†

Scheme (S) 3 0.05480 0.01827 12.457 < 0.001 0.023

V × M 4 0.31110 0.07778 53.047 < 0.001 0.128†

V × S 6 0.09490 0.01582 10.791 < 0.001 0.039
M × S 6 0.07120 0.01186 8.092 < 0.001 0.029
V × M × S 12 0.12340 0.01029 7.016 < 0.001 0.051
Error 1044 1.53070 0.00147

(d) Derby 10.2.1.6
Vector (V) 2 0.07569 0.03784 201.571 < 0.001 0.193∗

Metric (M) 2 0.00112 0.00056 2.977 0.051 0.003

Scheme (S) 3 0.02577 0.00859 45.746 < 0.001 0.066†

V × M 4 0.02968 0.00742 39.525 < 0.001 0.076†

V × S 6 0.02949 0.00491 26.179 < 0.001 0.075†

M × S 6 0.00491 0.00082 4.36 < 0.001 0.013

V × M × S 12 0.02902 0.00242 12.882 < 0.001 0.074†

Error 1044 0.19600 0.00019

(e) Derby 10.3.1.4
Vector (V) 2 0.06251 0.03125 104.028 < 0.001 0.142∗

Metric (M) 2 0.00745 0.00372 12.395 < 0.001 0.017
Scheme (S) 3 0.00674 0.00225 7.475 < 0.001 0.015
V × M 4 0.01009 0.00252 8.396 < 0.001 0.023
V × S 6 0.01787 0.00298 9.915 < 0.001 0.040
M × S 6 0.00434 0.00072 2.409 0.026 0.010
V × M × S 12 0.01886 0.00157 5.232 < 0.001 0.043
Error 1044 0.31367 0.00030

in Table VI, it seems to be a common trend that the vectoriza-
tion method is the most influential on the performance of static
TCP method. By combing with the results regarding RQ1, we
can say that Doc2Vec-DBoW would be a useful option.

On the other hand, the choice of the remaining two aspects
cannot always be impactful for enhancing the static TCP
method. However, the interaction between the vectorization
method and the distance metric may have a medium-level
impact (Table VI). Because all options using both Doc2Vec-
DBoW and Euclidean distance showed better performance
values in Table V, the combination of them may also be useful
in the static TCP method.

From the above results, we answer to the RQ2 as follows.
The choice of vectorization method plays the most impor-
tant role in the static TCP method, and the better option
is Doc2Vec-DBoW rather than the topic model. Moreover,
the interaction with the distance metric may also become
influential, and the promising combination is Doc2Vec-DBoW

and Euclidean distance.

3) Impact of Vectorization Method: The above analysis
showed that the vectorization method has the most significant
impact on testing efficiency. In this study, we have three
options for vectorization methods, Topic model, Doc2Vec-
DM, and Doc2Vec-DBoW. Although the dimension number of
vectors representing a test case is common to all methods, the
compositions of vectors differ among the vectorization meth-
ods, and such differences would cause the above variations in
the observed results.

The topic model focuses on a co-occurrence relation among
words (tokens) in test cases and performs a soft clustering
of words. Each element of the test case vector presents the
likelihood that the test case belongs to the corresponding soft
cluster. On the other hand, the Doc2Vec models are based
on the notion of word embedding, and the produced vectors
map semantic features of words on the vector space. That is,
the vector elements are not independent of each other, and
their combinations represent some semantics of words and
documents. Thus, a Doc2Vec model and a topic model would
produce different vectors for the same test case. Moreover,
Doc2Vec-DM and Doc2Vec-DBoW become different models
due to the difference in learning algorithm even if they learned
the same dataset: Doc2Vec-DBoW does not take into account
the order of words in test cases. These differences in the
vectorization methods would cause the variation of observed
data (testing efficiency values).

As a result, Doc2Vec-DBoW seems to be useful for pri-
oritizing test cases. Although the Doc2Vec-DBoW model is
insensitive to the order of words, it would be better to evaluate
the similarity among test cases because some test cases run
some of the same functions in different orders; The Doc2Vec-
DM may be sensitive to such a difference of word orders in
test cases, and consequently, it might be less appropriate to
evaluate the test case similarity.

E. Threats to Validity

Construct validity: The setting of parameters has an impact
on the training of vectorization models. If we train the topic
models and Doc2Vec models using different parameters, we
may obtain different empirical results. However, to conduct a
fair comparison of TCP methods, we used the default param-
eters of gensim library, except for the dimension number of
the vector; As the default dimension number differs between
LdaModel and Doc2Vec, we set the same number to them.

Internal validity: Both the topic model and the Doc2Vec
model use the words (terms) appearing in the test cases. When
there are compound terms that disobey the camel case rule or
the snake case rule (e.g., “filename”), the vectorization meth-
ods may not treat the semantic features of such terms properly
because we fail to split them appropriately. Although we
adopted the same preprocessing method as the previous work
[16], it would be better to leverage the advanced identifier-
splitting studies [30], and this is our future work.

Our TCP scheme described in Sect. II-B (Step 3) can be
another threat to the internal validity. Although we select



test cases to maximize the diversity of selected (already-
prioritized) test cases, the selection algorithm is the greedy
algorithm. That is, it might not provide the optimal solution
in terms of the diversity of test cases. We may mitigate this
threat by adopting another sophisticated algorithm, such as the
genetic algorithm [11]. It is also our significant future work.

External validity: Because our dataset is limited to five
sets obtained from the SIR [28] and all of them are Java
programs, our findings may not work well for the testing of
another system. That is, we would not be able to generalize
our empirical results to any software systems. To mitigate
this threat to validity, we would need to perform a further
comparative study using various systems, including other open
source products and commercial ones, as our future work.
Furthermore, we also have to use other systems written in
programming languages other than Java to examine the impact
of the programming language on the results.

IV. CONCLUSION AND FUTURE WORK

In this paper, we conducted a comparative study of 36
vectorization-based static TCP methods focusing on three
aspects (1) the vectorization method, (2) the distance metric,
and (3) the scheme to find the test case that is the farthest
from the set of already-prioritized test cases. As a result, we
empirically proved that the TCP methods using Doc2Vec (PV-
DBoW) tend to work well in terms of the testing efficiency.
Moreover, the combination of Doc2Vec (PV-DBoW) and Eu-
clidean distance may be useful in the static TCP. On the other
hand, the choice of the scheme (the above third aspect) may
not be influential. The empirical results would become a useful
baseline toward further development of vectorization-based
static TCP methods.

From the results, the vectorization method seems to be the
most promising factor in enhancing the static TCP. Because
a vectorization method such as Doc2Vec has many adjustable
parameters, a further study of the parameter turning approach
for test cases is our significant future work. Other of our future
work includes: (1) a real-world validation using test suites for
commercial software products, (2) applying the vectorization
methods to the dynamic TCP, and (3) enhancing the TCP
scheme by adopting a sophisticated algorithm such as the
genetic algorithm.
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