An Empirical Analysis
of the Impact of Comment Statements
on Fault-Proneness of Small-Size Module

Hirohisa Aman
Graduate School of Science and Engineering
Ehime University
Matsuyama, Japan 790-8577
Email: aman@cs.ehime-u.ac.jp

Abstract—Code size metrics are commonly useful in predicting
fault-prone modules, and the larger module tends to be more
faulty. In other words, small-size modules are considered to have
lower risks of fault. However, since the majority of modules in a
software are often small-size, many “small but faulty” modules
have been found in the real world. Hence, another fault-prone
module prediction method, intended for small-size module, is also
required. Such a new method for small-size module should use
metrics other than code size since all modules are small size.
This paper focuses on “comments” written in the source code
from a novel perspective of size-independent metrics; comments
have not been drawn much attention in the field of fault-
prone module prediction. The empirical study collects 11,512
small-size modules, whose LOC are less than the median, from
three major open source software, and analyzes the relationship
between the lines of comments and the fault-proneness in the set
of small-size modules. The empirical results show the followings:
1) A module in which some comments are written is more likely to
be faulty than non-commented ones; the fault rate of commented
modules is about 1.8 — 3.5 times higher than that of non-
commented ones. 2) Writing one to four lines of comments would
be thresholds of the above tendency.

Index Terms—Comment; metric; fault-prone module; small-
size module

I. INTRODUCTION

Early fault detection is key in developing and maintaining
software systems. Although a thorough code review [1], [2]
of all software components is one of the most effective means
for detecting faults, such an exhaustive review would be
almost impossible because of some practical restrictions such
as a tight budget, insufficient manpower and lack of time.
Hence, the prediction of the presence of faults in modules is
a promising approach to promote efficient review activities.

There has been considerable research on predicting fault-
prone modules by various metrics and mathematical models
(e.g., [3]-[7])- In many studies, the module size can be a useful
metric to predict fault-prone modules [3], [4]. That is to say,
the larger module tends to be more faulty. For instance, in the
case of Eclipse [8] ver.3.0, the rate of faulty modules becomes
higher when increasing the module size (lines of code: LOC)
as shown in Fig.1. Such data may lead to the conclusion that
the small-size module has a low risk of fault. This trend seems
to be common in the development of software.

However, we often see many faulty modules even if they
are small-size ones as shown in Fig.2. Although a small-size
module has a low risk of fault, there are a lot of small-size
modules in a software; the distribution of code size (LOC)
is usually right-skewed (right tail is longer) as shown in
Fig.3. That is, the majority of modules are small-size modules.
Therefore, we do not have to downplay the fault-proneness of
small-size modules, and we need to develop another method to
predict fault-prone modules, intended for small-size modules.

If we focus on only small-size modules, the code size
metrics might be less effective because all modules are small.
Thus, the metrics other than code size ones may become
relatively useful in predicting fault-prone modules. In this
paper, we will develop a new perspective of size-independent
metric focusing on “comments” written in source files. While
comments are familiar to practitioners, there have not been
many studies about the relationship between the comments
and the fault-proneness of software modules in the past.

Since any comments have no contribution to the program
behavior, they have often been neglected in analyzing the
fault-proneness of modules. Meanwhile, there have been dis-
cussions about the indirect impact of comments on the code
quality. Kernighan and Pike [9] pointed out that we should
not comment bad code; we should rewrite it in order to be
easily understood without comments. Fowler [10] described
the comments may be related to “bad smells” for refactoring.
More precisely, comments are said to be the deodorant rather
than the bad smell, so comments are good entity for enhancing
the code understandability, but they may also cover up a
problematic code. That is to say, the presence of comments
may be a sign of complicated code, and be a useful clue to find
faults during the visual code review. The contribution of this
paper is to statistically show the impact of comments on the
fault-proneness of small-size modules. The results will provide
a useful information about fault-proneness to practitioners.

The remainder of this paper is organized as follows: Section
Il describes the definitions of comments and metrics used
in this paper. Then, section Il presents our empirical study
analyzing the impact of comments on the fault-proneness of
small-size modules. Section IV and V discuss the related work

0.5
o
o

04
|
o
N
7
o
~
(o]
/
__

fault rate
0.3
|
AN
(o]
o]
N
(e}

0.2
|
~N

0.1

0.0
L

T T T T T T
100 200 300 400 500 600
LoC

Fig. 1. Fault rate in Eclipse ver.3.0.

100 150 200 250 300
|

number of faulty code

HHHHHHHDUD

40 120 200 280 360 440 520 600
LoC

Fig. 2. Number of faulty modules in Eclipse ver.3.0.
o
E .
é o
8 8
s
£ 8+
o J
[T T T T 1
0 200 400 600 800 1000
Loc
Fig. 3. Distribution of LOC values in Eclipse ver.3.0

(Note: LOC > 1000 omitted).

and the threats to validity of our work, respectively. Finally,
section VI provides our conclusion and future work.

Il. DEFINITION

This paper analyzes comments in Java source programs,
quantitatively. The Java language specification [11] defines the
following two kinds of comments:

« Traditional comment: a text from “/«” to “«/”; a doc

comment for Javadoc [12], written in from “/ %" to
“x /.7 is a special type of traditional comment.

o End-of-line comment: a text from “/ /” to the end of line.

Now we introduce a comment-related metric in order to
analyze the impact of comments on the fault-proneness.

Definition 1 (Lines of Comments: LCM)
Given a source file. A source line in which any comments
appear is a “commented line.” Then, let the lines of comments

(LCM) be the total number of commented lines written inside
the method bodies?® in the source file. However, the following
types of comments are excluded from the LCM measurement:

o Comments written outside method bodies (e.g., Javadoc).

o Comment out—disabling a code fragment.
O

The larger LCM indicates that the more comments are written
to explain the source code, i.e., more memaos by the developers.
It should be noted that LCM does not count “doc” (Javadoc)
comments?, since a doc comment is used to make a manual
and has a different purpose from the above “comments.”
Further analysis of the doc comments will be our future work.
Comment outs are also excluded from the LCM measure-
ment as they have different meanings—they are not devel-
oper’s memos. Since the comment outs have different purposes
and meanings from the above normal comments, we should
also exclude the comment outs in our analysis. In order to
accurately determine whether a code fragment is a comment
out or not, we should query each developer for each code
fragment. However, such a follow-up investigation is practi-
cally impossible, so we will use the following simple detection
algorithm [13], [14] instead of such follow-up study.

Algorithm 1 (Simple Detection of Comment Out)

Given a comment. Let C be the content of given comment,
which excludes the special strings indicating the start and end
of comment; C is the string from just behind “/ «” to just
before “x/” in the case of traditional comment, and that is
the string from just behind “//” to the end of line in the case
of end-of-line comment. If the last non-white-space character
appeared in C' is one of the followings: (1) semicolon *;” 0(2)
left curly brace “{” and (3) right curly brace “}”, then regard C
as a comment out; a non-white-space character is a character
excluding the followings: the ASCII space (SP), horizontal tab
(HT), form feed (FF), line feed (LF), and carriage return (CR).

O

The above algorithm is a simple detection algorithm focus-
ing on the tailing character in the comment. Because of the
simpleness, it can be easily implemented; MethodComment-
Counter® is a tool based on the above algorithm, which can
count lines of comments, comment outs and doc comments,
separately. Although the above algorithm is not perfect, it has
a practical level of accuracy detecting comment outs*. We will
use the above simple algorithm in our empirical work.

To discuss the fault-proneness quantitatively, we introduce
the notion of fault rate (FR) [14] as well.

1The term “method” may be replaced with “function” or “procedure”
according to the programming language used in the source file.

2A doc comment is described just before (outside) the corresponding
method’s definition.

Shttp://www.hpc.cs.ehime-u.ac.jp/~aman/project/tool/

MethodCommentCounter.html

4An empirical work reported that the algorithm successfully detected about
99% of comments/comment outs for a middle-scale open source software,
Azureus 4.2.0.4 [13], [14].

Definition 2 (Fault Rate: FR)
Given a set of source files. Define the fault rate (FR) in the
set as the following equation:

Number of source files in which a fault is found

FR = -
R Number of source files

a

FR is the ratio of faulty source files (modules) in a given set
of source files. Hence, the higher FR means that the source
files in the set are more suspect to have faults, i.e., fault-prone.

FR is a simple metric based on the presence or absence
of fault in a module, and we focus on the following simple
question in this paper: “whether the comment statement can
actually be a significant sign of potential fault in small-size
module or not”” While we can also consider more detailed
metrics of fault-proneness such as the number of faults or the
fault density (bug density), first we should answer the above
simple question using FR. We would like to conduct further
analysis using such detailed metrics in the future.

I1l. EMPIRICAL STUDY

In this section, we conduct an empirical study to analyze
the impact of comments on the fault-proneness of small-size
modules. Our experimental procedure is as follows.

(1) Source Code Collection (Sect.llI-A):

Collect small-size modules (source files) from some
projects. We will consider the module whose LOC is
less than the median LOC to be “small size,” reflecting
the right-skewed distribution as shown in Fig. 3.

(2) Measurement of LCM (Sect.Il1-B):

Measure LCM values of all the collected small-size
modules using our metric tools, JavaMethodExtractor®
and MethodCommentCounter.

(3) Impact Analysis of Comment on FR (Sect.111-C):
Compute the FR of non-commented modules (whose
LCM = 0) and the FR of modules in which some
comments are written (LCM > 7) (for 7 = 1,2,...).
Then, perform a chi-square (x?2) test to see whether
the two FRs show a significant difference or not.

A. Source Code Collection

We collected our experimental objects (small-size modules)
from three major open source software shown in Table | —
Ant [15], Eclipse and Xerces [16]. We selected them because
they satisfied the following requirements (a)—(c):

(a) The source files are available.

(b) The source files are written in Java.

(¢) The information about the presence of post-release fault
is available for each source file; a post-release fault is a

fault found after the software was released.
O

The requirement (a) is essential for measuring LCM. Any open
source software satisfies (a). The requirement (b) comes from

Shttp://www.hpc.cs.ehime-u.ac.jp/~aman/project/tool/
JavaMethodExtractor.html

our metric tools. The requirement (c) is absolutely necessary
to analyze the fault-proneness of modules. We used PROMISE
data [17] as our data source satisfying (c); it is possible to use
other data repositories, or extract such fault data from a pair
of a code repository and a bug tracking system.

Table Il shows the distribution of code sizes (LOC values)
in our data set. We can see that the majority are small-
size modules for each software, as like Fig.3. Then, we will
consider a module whose LOC is less than the median LOC
(67 for Ant, 58 for Eclipse and 36 for Xerces; see Table II)
to be a small-size module, and our experimental object in this
paper. In this study, 11, 512 source files are collected from the
above three open source software projects as the small-size
modules for our analysis (see Table 1I1).

B. Measurement of Lines of Comments (LCM)

We measured LCM values of our 11,512 small-size mod-
ules. Figure 4 and Table IV show the distribution of LCM
values in our data set. The majority of the modules are “non-
commented” modules as shown in Fig.4 and Table IV: LCM
= 0 for about 65 — 94% of the modules. Table V shows the
distribution of LCM values, excluding non-commented (LCM
= 0) modules. The most of small-size modules have low LCM
values: the 75 percentiles of LCM are 7 to 10. That is to say,
most small-size modules have a few or no lines of comments.

C. Impact Analysis of Comment on Fault Rate (FR)

We conducted a statistical analysis on the difference be-
tween FR of non-commented modules and FR of commented

TABLE |

OPEN SOURCE SOFTWARE PROJECTS USED IN OUR EMPIRICAL STUDY.
software | version | number of modules | total LOC
Ant 1.3 122 14,230
1.4 173 20,499
1.5 286 33,694
1.6 343 45,796
1.7 720 87,334
Eclipse 2.0 6,143 765, 765
2.1 4,838 690, 736
3.0 9,727 | 1,262,893
Xerces 1.2 411 60, 032
1.3 425 64, 503
total 23,188 | 3,045,482

TABLE Il
DISTRIBUTION OF LOC VALUES.

software || min | 25% | median | 75% | max

Ant 2 30 67 147 | 1398
Eclipse 4 22 58 142 | 5228
Xerces 4 17 36 103 3578

TABLE I
EXPERIMENTAL OBJECTS.
software || Ant | Eclipse | Xerces || total
number of modules || 811 | 10, 288 | 413 || 11,521

modules, for each software. Let F'R be the FR of the modules
whose LCM = 0, and let F'R(7) be FR of the modules whose
LCM > 7. Then, for each threshold® = = 1,2,3,..., we
performed a chi-square (x2) test to determine whether there is
a significant difference between F'R, and F'R(7) or not. Our
hypotheses are as follows:

e Hy: The null hypothesis is that the two populations
from which the modules were drawn have the same true
proportion of faulty ones (F'Ry = FR(7)).

o Hj: The alternative is that those proportions are different
(FRo # FR(7)).

O

The results are shown in Figs.5-7 and Table VI-VIII. For
all 7, we see significant differences between F R, and FR(7).
That is to say, the FR of non-commented modules significantly
differs from the FR of modules who has one or more comment
lines. Moreover, F'R(7) slightly increases as T gets higher.

D. Discussion

The above results show that LCM has an impact on the
fault-proneness of small-size modules. The modules having
some comments are double or triple fault-prone than non-
commented ones. The threshold of LCM to statistically show
a significant difference in FR is 1 for Eclipse and Xerces, and
that is 4 for Ant, with the level of significance of 1% (see
Figs.5-7). In each case, even if LCM is a small number, the

number of source files
6000 10000
| |

2000
|

0
L

[T T T T T 1
0 10 20 30 40 50 60
LCM
Fig. 4. Distribution of LCM values (Note: LCM > 60 omitted).
TABLE IV
DISTRIBUTION OF LCM VALUES.

software || min | 25% | median | 75% | max

Ant 0 0 0 3 120
Eclipse 0 0 0 2 183
Xerces 0 0 0 0 14

TABLE V

DISTRIBUTION OF LCM VALUES (EXCLUDING LCM= 0).

software || min | 25% | median | 75% | max

Ant 1 3 5 10 120
Eclipse 1 2 3 8 183
Xerces 1 4 6 7 14

6To ensure a sufficient number of samples, we limited 7 to the 75 percentile
shown in Table V.

0.15 0.20
| |

fault rate: FR(t)
0.10
I
\
o

0 2 4 6 8 10
LCM threshold: ©

Fig. 5. FR(7) in Ant.
S
o
0 __o
= S 7 O/o/o"o
F o
w o O/
g 9 o
« o
= \FR(l)
&
8
o
I
s |
e T T T T T
0 2 4 6 8

LCM threshold: ©

Fig. 6. FR(7) in Eclipse.

O—0——0

0.2 0.3 0.4
| |

fault rate: FR(t)

0.1

0.0

LCM threshold: ©

Fig. 7. FR(T) in Xerces.

presence of comment makes a definite impact on the fault-
proneness of small-size module. Our empirical results may
relate to one of the bad code smells [10] for refactoring.

We do not mean that comments are bad entities for the code
quality. Since comments have no contribution to the behavior
nor the structure of software, the comments themselves can
not be the cause of faults. Thus comments have no direct
relationship with any faults in modules. However, an indirect
relationship between the comments and the fault-proneness
is present. Comments written in a module may be useful to
enhance the readability and/or understandability of the module,
and will be good entities for the code. Because of the favorable
effect of comments, some comments are often written for cov-
ering up problematic parts which are complicated. Therefore,
a comment may be a useful sign of potential faults. Such a
commented code should be sophisticated (rewritten) so as to

be understandable without detailed comments.

In general, a larger module is more faulty. Since small-size
modules are often treated as low risk ones, a lot of latent faults
in small-size modules might be overlooked. To find faulty
modules effectively even in small-size modules, metrics other
than code size should also be developed. The contribution of
this paper is to show that LCM can be one of useful metrics
related to the fault-proneness of small-size modules.

1V. RELATED WORK

Since the comments have no contribution to the execution of
programs, most of software metric-based studies have omitted
the comments in their program analysis. There have been a
few studies focusing on the comments as their major objects.

TABLE VI
FR(7) INANT AND
STATISTICALLY-SIGNIFICANT DIFFERENCES WITH F'Ry.

FRo | v | FR(r) | FR(7)/FRo

1 | 0.0957* 1.75

2 | 0.102* 1.76

3 | 0.112* 2.04

4 | 0.130* 2.37
0.0548 | 5 | 0.122* 2.23

6 | 0.127* 2.32

7 | 0.146* 2.66

8 | 0.135™ 2.46

9 | 0.136* 2.48

10 | 0.141* 2.57

(x7p-value < 5%; = < 1%, *#*. < 0.1%)
TABLE VII

FR(7) IN ECLIPSE AND
STATISTICALLY-SIGNIFICANT DIFFERENCES WITH F'Ry.

FRo | v | FR(r) | FR(r)/FRo
1 | 0.102™ 2.87
2 | 0.110** 3.09
3 | 0.118™ 3.31
0.0356 4 | 0.139* 3.90
5 | 0.144* 4.04
6 | 0.148* 4.16
7 | 0.151% 4.24
8 | 0.157* 4.41
(+: p-value < 5 skl < 1%; kxk < 0.1%)
TABLE VIII

FR(7) IN XERCES AND
STATISTICALLY-SIGNIFICANT DIFFERENCES WITH F'Ry.

FRo | 7 | FR(r) | FR(7)/FRo
1| 0.304* 3.49
2 | 0.318* 3.65
3 | 0.389 4.46
0.0872 | 4 | 0.389* 4.46
5 | 0.500% 5.73
6 | 0.500% 5.73
7 | 0.500% 5.73
(¥ p-value < 5%; = < 1%; =*xx < 0.1%)

Tenny [18] has empirically studied the impacts of the proce-
dure structure and the presence of comments on the program
readability. The empirical results showed that comments help
to improve the readability. Although the study discussed the
impact of comments, the empirical study was conducted on a
program which has no fault, so Tenny’s study had a different
standpoint with our study. Buse et al. [19] have empirically
discussed the ability of comments for enhancing the program
readability as well. They pointed out that the comments could
be used to adjust the readability upward for an unreadable
code. Their basic viewpoint about the comments is close to
our study, but there is a fundamental difference in the focus:
while their study focused on the program readability, our study
addresses the fault-proneness of small-size modules.

Fluri et al. [20] have analyzed co-changes between the
modules and their comments during the software evolution.
They reported some useful findings such that some updates
of comments lagged behind the updates of code. While their
study was interesting in analyzing the writing-comment activ-
ities, the impacts on fault-proneness were not discussed.

This work further studies the previous analysis [14]. Its em-
pirical work classified a set of modules into three subsets: non-
commented ones, low-commented ones, and high-commented
ones. Then, it statistically showed a basic trend that the high-
commented modules was the most fault-prone. In this paper, to
discuss such a trend in more detail, we focused on the small-
size modules and analyzed the relationship between the lines
of comments (LCM) and the fault-proneness.

Some studies in the mining software repositories [21], [22]
said that a module which required many bug fixes in the past
would have another bug (fault), so such a module is fault-
prone. Such a module may cause more comment descriptions
and/or comment outs as well. Further investigation from such
a point of view will be our significant future work.

V. THREATS TO VALIDITY

This study focused on the lines of comments (LCM) as
a novel measure related to the fault-proneness of small-size
modules, since comments may be an important sign regarding
“code smell.” Our empirical work used the data about whether
a fault was found in the module or not, so we did not take
into account the severity of faults and the number of faults
in the modules. While the primary contribution of this paper
is to introduce yet another perspective of fault-prone module
prediction, such roughness of data may decrease usefulness of
our empirical results. That is to say, our results might not be
useful in finding problematic modules who have many critical
faults; we need to discuss the fault severity and the number
of faults as well. Moreover, we could not associate comments
with faults, directly. Since our data collection scheme is in-
sufficient for conducting further analysis regarding the number
of faults, severity of faults and comment-fault connections, we
have to reconsider our scheme first. We will need to conduct
another enhanced data collection and more detailed analysis.

LCM may correlate with LOC in many cases, i.e.,, LOC
may be a confounding factor. Since we used only small-

size modules, the influence of LOC would be less in our
results: there were weak positive correlations between LOC
and LCM—the correlation coefficients were 0.300, 0.337 and
0.246 for Ant, Eclipse and Xerces, respectively. Nevertheless,
we have not solved the problem of confounding factor. To
discuss the confounding factors and evaluate the impact of
LCM more properly, we should do a stratification by LOC and
perform additional analysis using LCM and other metrics.

Our data did not consider the timing of comments—when
the comments are written. Some age-old comments might be
no longer in use and have no impact on the code quality. Such
tracking comments and their analysis would also be required.

Since our results are from only three open-source software
written in Java, our findings may not be general to all kinds of
software. Other open-source or commercial software projects
have different coding styles and rules in their developments, so
our results may not be useful for their quality managements.
While we should perform further analysis on other projects
including ones written in another language (not Java), our
work will be a useful motive for the discussion about the
comments toward the fault-prone module prediction.

We did not analyze “comment out” and Javadoc. They may
also have other impacts on the fault-proneness in this study.

V1. CONCLUSION

Smaller modules have been considered less serious in the
studies of predicting faulty modules. However, we often see
many “small but faulty” modules in actual software systems.
Although each small-size module has a low risk of fault, there
are a lot of small-size modules—a majority of modules are
small-size ones. As a result, the total number of faulty modules
is relatively high even if they are small-size modules. Thus, we
focused on “small-size modules” and approached their fault-
proneness from a new perspective other than code size—the
amount of comments written in modules.

Our empirical work collected a lot of small-size modules,
whose LOC are less than the median, from three major open
source software, Ant, Eclipse and Xerces. Then we statistically
analyzed an impact of the comment(s) on the fault-proneness.
The empirical results showed the followings: (1) Modules
having some comments are more likely to be faulty than non-
commented modules: the fault rate of commented modules is
about 1.8-3.5 times higher than that of non-commented ones.
(2) Writing one to four lines of comments would be thresholds
of the above tendency.

It is generally preferable that a small-size module is under-
standable even if it has no comment because of the smallness.
Our empirical results mean that a small-size module with some
comments may contain some problematic code. It should be
noted that we did not say comments are bad entities; while
comments are good entities to enhance the code readability,
they may cover up even problematic code’s complexity.

It is easier to perform a visual inspection on smaller module.
During such visual inspections, comments will be useful clues
to finding faulty modules in even the set of small-size modules.
Our future work will conduct further investigations into the

impact of comments on the fault-proneness in order to enhance
the reliability of our empirical results, using the fault severity,
the number of faults (fault density) and so on. An analysis of
the quality of comments themselves will also be our important
future challenge.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviews for
their helpful comments on an earlier version of this paper. This
work was supported by the Grant-in-Aid for Young Scientists
(B) 22700035, Japan Society for the Promotion of Science.

REFERENCES

[1] T. Glib and D. Graham, Software Inspection.
Wesley Professional, 1993.

[2] K. Wiegers, Peer Reviews in Software: A Practical Guide.
MA: Addison-Wesley Professional, 2002.

[3] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and failures
in a complex software system,” IEEE Trans. Softw. Eng., vol. 26, no. 8,
pp. 797-814, Aug. 2000.

[4] A. G. Koru, D. Zhang, K. E. Emam, and H. Liu, “An investigation into
the functional form of the size-defect relationship for software modules,”
IEEE Trans. Softw. Eng., vol. 35, no. 2, pp. 293-304, Mar. 2009.

[5] L. C. Briand, W. L. Melo, and J. Wiist, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” |EEE
Trans. Softw. Eng., vol. 28, no. 7, pp. 760-720, Jul. 2002.

[6] T.J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Trans. Softw.
Eng., vol. 31, no. 4, pp. 340-355, Apr. 2005.

[7] G.J. Pai and J. B. Dugan, “Empirical analysis of software fault content
and fault proneness using bayesian methods,” IEEE Trans. Softw. Eng.,
vol. 33, no. 10, pp. 675-686, Oct. 2007.

[8] The Eclipse Foundation. (2012) Eclipse - the eclipse foundation open
source community website. [Online]. Available: http://www.eclipse.org/

[9] B. W. Kernighan and R. Pike, The practice of programming. Boston,
MA: Addison-Wesley Longman, 1999.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA: Addison-Wesley Longman, 1999.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Secification, Third Edition. Upper Saddle River, NJ: Addison-Wesley
Professional, 2005.

[12] Oracle. (2011) Javadoc technology. [Online].
http://docs.oracle.com/javase/6/docs/technotes/guides/javadoc/

[13] H. Aman, “An empirical study on relationship between comment de-
scription and fault rate in open source software,” in Software Engineering
Front 2010, M. Matsushita and O. Shigo, Eds. Tokyo: Kindai Kagaku
sha, 2010, pp. 97-100, in Japanese.

[14] ——, “Quantitative analysis of relationships among comment descrip-
tion, comment out and fault-proneness in open source software,” 1PSJ
Journal, vol. 53, no. 2, pp. 612-621, Feb. 2012, in Japanese.

[15] Apache Software Foundation. (2011) Apache Ant. [Online]. Available:
http://ant.apache.org/

[16] ——. (2012) The Apache Xerces Project.
http://xerces.apache.org/

[17] G. Boetticher, T. Menzies, and T. Ostrand, “Promise repository of
empirical software engineering data http://promisedata.org/repository,”
West Virginia University, Department of Computer Science, 2007.

[18] T. Tenny, “Program readability: Procedures versus comments,” |EEE
Trans. Softw. Eng., vol. 14, no. 9, pp. 1271-1279, Sep. 1988.

[19] R. P. Buse and W. R. Weimer, “A metric for software readability,” in
Proc. 2008 Int'l Symp. Softw. Testing and Analysis, 2008, pp. 121-130.

[20] B. Fluri, M. Wirsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367-394, 2009.

[21] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proc. 29th Int’| Conf. Softw. Eng., 2007,
pp. 489-498.

[22] Google. (2011) Bugspots - bug prediction heuristic. [Online]. Available:
https://github.com/igrigorik/bugspots

Boston, MA: Addison-

Boston,

Available:

[Online]. Available:

