
1128
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

LETTER

Change-Prone Java Method Prediction by Focusing on Individual
Differences in Comment Density∗

Aji ERY BURHANDENNY†,††a), Nonmember, Hirohisa AMAN†††, and Minoru KAWAHARA†††, Members

SUMMARY This paper focuses on differences in comment densities
among individual programmers, and proposes to adjust the conventional
code complexity metric (the cyclomatic complexity) by using the abnor-
mality of the comment density. An empirical study with nine popular
open source Java products (including 103,246 methods) shows that the
proposed metric performs better than the conventional one in predicting
change-prone methods; the proposed metric improves the area under the
ROC curve (AUC) by about 3.4% on average.
key words: change-prone method, comment density, individual difference,
ROC curve, AUC

1. Introduction

Comments are both well-known artifacts for enhancing
the readability of programs and useful embedded docu-
ments [1]. They can provide various information includ-
ing the copyright designation, the programmers’ memos on
the code fragments and the manuals of their functions [2].
While comments are independent of program executions,
we cannot ignore the impact of comments on the code
quality due to their helpful effects on the program com-
prehension. However, there have also been concerns that
some programmers might add detailed comments to their
complicated code in order to compensate for a lack of
readability [3]; In the code refactoring world, well-written
comments are said to be “deodorant” for masking code
smells [4]. There are empirical reports showing that the
comments within a Java method body—hereinafter referred
to as “inner comments”—are noteworthy artifacts in ana-
lyzing the code quality, and more-commented methods are
more likely to be fixed after their releases (i.e., change-
prone) [5]–[7].

However, a programmer’s preference may also play an
important role in commenting source code. While one pro-
grammer prefers to write detailed comments, another pro-
grammer does not like to write comments at all. If the latter
programmer wrote a well-commented method, it would be

Manuscript received November 21, 2016.
Manuscript revised January 28, 2017.
Manuscript publicized February 15, 2017.
†The author is with Graduate School of Science and Engineer-

ing, Ehime University, Matsuyama-shi, 790–8577 Japan.
††The author is with Engineering Faculty, Mulawarman Univer-

sity, Samarinda, East Kalimantan, 75119 Indonesia.
†††The authors are with Center for Information Technology,

Ehime University, Matsuyama-shi, 790–8577 Japan.
∗The basic idea of this paper was presented at the 2016 Inter-

national Conference on Business and Information (BAI2016) [20].
a) E-mail: aji@se.cite.ehime-u.ac.jp

DOI: 10.1587/transinf.2016EDL8224

an abnormal case and we should review the method pref-
erentially. That is to say, such an abnormality depends on
who wrote the program. The aim of this paper is to evalu-
ate the abnormality of a method from the perspective of the
comment density with consideration for differences among
individual programmers, and to empirically examine if such
an abnormality can help in a change-prone method predic-
tion.

2. Comment Density Considering Individual Differ-
ences and Its Application to Complexity Metric

In general, more complex methods tend to be harder to un-
derstand, and may have more inner comments than simpler
ones. To evaluate the amount of comments regardless of the
complexity, we focus on the comment density, the lines of
inner comments normalized by the complexity. In this pa-
per, we will use the cyclomatic complexity [8], which has
been a well-known complexity metric, as our complexity
criterion.

In order to consider individual differences in comment-
ing code, we need to make a link between a method and its
programmer. In general, two or more programmers may be
involved in a method development through its maintenance.
Thus, we focus on the initial version of method because
we can always determine a specific programmer for each
method; if we focus on later versions of methods which two
or more developers have made modifications, it is hard to
evaluate the amount of comments for each developer. A fur-
ther analysis taking care of multi-developer methods is our
significant future work.

Now, let N be the number of programmers, and denote
them by pi (for i = 1, . . . ,N). Suppose pi has developed
Mi methods, mi j (for j = 1, . . . ,Mi). Then, we define the
comment density of method mi j “CD(mi j)” as follows:

CD(mi j) := log

{
LCM(mi j)

CC(mi j)
+ 1

}
(1)

where LCM(mi j) and CC(mi j) are the lines of inner com-
ments of mi j and the complexity of mi j, respectively. While
a comment density can also be obtained by the simple ra-
tio “LCM(mi j)/CC(mi j),” the distribution of such values is
likely to be right-skewed, so we will use a logarithmically
transformed form shown in Eq. (1)∗∗.
∗∗Since LCM(mi j) can be zero, we inserted “+1” into the equa-

tion: if LCM(mi j) = 0, then CD(mi j) = log(0 + 1) = 0.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



LETTER
1129

Based on CD(mi j), we define the comment density con-
sidering individual difference, “zCD(mi j),” as follows:

zCD(mi j) =
CD(mi j) − μi

σi
(2)

where μi and σi are the mean and the standard deviation
of programmer pi’s comment densities CD(mi j) (for j =
1, . . . ,Mi), respectively.

zCD(mi j) is a standard score of CD(mi j), which is re-
ferred to as “z-score.” A larger value of zCD(mi j) shows
that mi j has a higher comment density than programmer pi’s
usual work. Since its scale is normalized by the dispersion
(σi), a high zCD value signifies that the comment density is
abnormally high for the programmer. That is to say, zCD
can be a metric for measuring an abnormality of method
from the perspective of the comment density.

Now we make a hypothesis that zCD is useful in find-
ing problematic methods. Needless to say, the conventional
complexity metric, CC, is a promising metric for evaluat-
ing programs. Then, we consider an enhancement of CC by
using zCD, and define the following Adjusted CC, “ACC”:

ACC(mi j) = φ(mi j) · CC(mi j) (3)

where φ(mi j) is the degree of attention to mi j. In order to cal-
culate φ(mi j) based on the abnormality of mi j, we propose to
use the cumulative normal distribution function as follows:

φ(mi j) = Pr
{

x ≤ zCD(mi j)
}

=

∫ zCD(mi j)

−∞
1√
2π

e−
1
2 x2

dx . (4)

The range of φ(mi j) is 0 < φ(mi j) < 1. When a method
has an average comment density, φ(mi j) is around 0.5.
When zCR(mi j) is higher—an abnormally-high comment
density—, φ(mi j) gets closer to 1; when zCR(mi j) is lower,
φ(mi j) approaches 0.

3. Empirical Study

3.1 Aim and Dataset

The aim of this empirical study is to quantitatively examine
if ACC can be useful for detecting change-prone Java meth-
ods. Since change-prone methods cannot survive unscathed
after their releases, they should be reviewed more carefully.

We collected methods from nine popular open source
software (OSS) projects shown in Table 1. The main reasons
why we selected those nine projects as our data source are:
(a) they are popular OSS projects, (b) their source files have
been maintained with the Git, and (c) they are written in
Java.

For the reason (a), we believe that it is better to use pop-
ular projects; results derived from minor projects would be
worthless. All of these nine projects are ranked in the top 50
popular Java projects at SourceForge.net†. The reason (b)

†https://sourceforge.net/

Table 1 Surveyed OSS projects.

project name #examined methods
Angry IP Scanner [9] 1, 669
Eclipse Checkstyle Plugin [10] 1, 511
eXo Platform [11] 1, 362
FreeMind [12] 6, 920
GNU ARM Eclipse Plug-ins [13] 3, 813
Hibernate ORM [14] 34, 395
PMD [15] 2, 510
ProjectLibre [16] 30, 090
SQuirreL SQL Client [17] 20, 946
total 103, 246

is for an ease of data collection. The Git provides power-
ful functions to collect data including source code and their
changes. The reason (c) is from our data collection tool††.

For each source file, we traced all change logs and
found the initial version of each method. Then, for each
method, we collected the following data: (1) CC value, (2)
LCM value, (3) the author’s name and e-mail address, and
(4) the number of changes that occurred after the release.
We compute CD value for each method with Eq. (1), and
get the mean (μi) and the standard deviation (σi) of the CD
values for each programmer. Then, we compute zCD value
for each method with Eq. (2). Finally, we obtain ACC values
with Eqs. (3), (4).

There may be an author who has two or more differ-
ent names or e-mail addresses on the repository. We tried
integrating duplicated author data by the following set of
rules—it is a simpler version of the algorithm proposed by
Bird et al. [18]: (1) if two authors have different addresses
but the same name, then we regard them as the same author;
(2) if two authors have the same address but different names,
then we regard them as the same author.

3.2 Assessment Criterion

To evaluate the performance of change-prone method pre-
diction using ACC, we leverage the receiver operating char-
acteristic (ROC) curve [19]. When a method’s ACC value is
greater than an established threshold, we judge the method is
change-prone. Then, we can see the false-positive (FP) rate
and the false-negative (FN) rate. The ROC curve shows the
relationships between FP rate and FN rate for all available
thresholds. The area under the curve (AUC) is a well-known
criterion of the performance—a higher AUC value signifies
a better performance in discriminating change-prone meth-
ods. We will compare the AUC values of ACC (the proposed
metric) and the ones of CC (the conventional metric).

Since the number of code changes that occurred in
most of methods is less than two (see Table 2), we consider
the methods which had been modified two or more times af-
ter their release, to be change-prone methods in this paper.

3.3 Results and Discussions

Figure 1 shows ROC curves for the Angry IP Scanner: (a)
††http://se.cite.ehime-u.ac.jp/tool/



1130
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.5 MAY 2017

Table 2 Distribution of code change counts in methods.

project name min 25% 50% 75% max
Angry IP Scanner 0 0 0 1 45
Eclipse Checkstyle Plugin 0 0 0 1 7
eXo Platform 0 0 0 1 14
FreeMind 0 0 1 1 61
GNU ARM Eclipse Plug-ins 0 0 0 1 33
Hibernate ORM 0 0 0 1 47
PMD 0 0 0 1 13
ProjectLibre 0 0 0 0 7
SQuirreL SQL Client 0 0 0 0 21

Fig. 1 ROC curves for “Angry IP Scanner.”

Table 3 AUC values: CC vs. ACC.

AUC (α)
project name CC ACC δ

Angry IP Scanner 0.647 0.685 5.922
Eclipse Checkstyle Plugin 0.672 0.692 2.905
eXo Platform 0.690 0.718 4.068
FreeMind 0.665 0.691 3.940
GNU ARM Eclipse Plug-ins 0.604 0.632 4.549
Hibernate ORM 0.665 0.678 1.918
PMD 0.600 0.624 3.996
ProjectLibre 0.819 0.852 4.010
SQuirreL SQL Client 0.602 0.598 −0.700
average — — 3.401

and (b) are the ROC curves obtained by using the conven-
tional metric (CC) and the proposed metric (ACC), respec-
tively. Because of space limitations, we will omit the ROC
curves for the remaining eight projects. Table 3 presents the
AUC values for all projects. δ in the table denotes the rate
of improvement by ACC instead of CC, defined as follows:

δ = 100 · α(ACC) − α(CC)
α(CC)

(%), (5)

where α(CC) and α(ACC) are the AUC values of ROC
curves obtained by using CC and ACC, respectively.

All projects except for the SQuirreL SQL Client show
δ > 0 (see Table 3), which means the proposed metric per-
forms better than the conventional one in terms of change-
prone method prediction. Although the SQuirreL gives a
negative rate, it is almost zero (−0.7%), so the proposed
metric is at almost the same level of performance as the con-
ventional metric for the SQuirreL. In total, the average value
of δ is 3.4%. While the improvement made by using ACC
is not especial high, it showed better performances for eight
out of nine sampled projects. Therefore, an abnormality of
comment density seems to be worthy of attention.

As an ACC value is a CC value multiplied by an at-
tention degree which is in the range between 0 and 1, it is
highly unlikely that an ACC value of a method differs drasti-
cally from the CC value of the method. This would be one of
the major reasons why the metrics ACC and CC show sim-
ilar performances. Nonetheless, the actual results show that
ACC performs better than CC for eight out of nine projects.
Since the multiplication of the attention degree can change
the order of methods in their metric values, the adjustment
seems to work successfully in detecting change-prone meth-
ods. That is to say, the abnormality of comment density
by programmer would be a useful factor for enhancing the
change-prone method prediction.

3.4 Threats to Validity

Our results may be subject to the following concerns.
We investigated nine OSS projects and the number of

subjects might be considered small, so there is a threat of
generalization. However, since the our analysis unit is a
“method” and not project, the above threat would be miti-
gated.

We analyzed OSS projects only written in Java. While
programs written in another language might show different
results, the notion of comment description is common to
most of the modern programming languages. Thus, we be-
lieve the limitation of programming language cannot be a
serious threat to validity in this paper.

Our data of methods are of their “initial versions” but
not the ones of a certain release version. Therefore, our re-
sults might not work well for predicting code changes after
the release of interest. As we mentioned in Sect. 2, there
is the issue of “multi-developer” of methods. In this paper,
we proposed to evaluate an abnormality of comments by fo-
cusing on each developer. In order to take into account a
method which has been developed and maintained by two
or more developers, we have to make another definition of
abnormality in commenting, i.e., a multi-developer version
of it. Since such multi-developer cases should be addressed
as well, we plan to perform further analyses in order to pro-
duce a reasonable definition in the future.

4. Conclusion

We proposed to adjust the code complexity metric by us-
ing the abnormality of comment densities. Since there can
be a wide variety in commenting code among programmers,
the abnormality of comment densities was considered in this
paper. Through our empirical study with nine OSS projects,
we showed that the proposed metric works better than the
conventional complexity metric in predicting change-prone
Java methods which cannot survive unscathed after their re-
leases. Our future work includes a further analysis focusing
on not only comment density but also their contents, and an
extension of our definition to multi-developer cases.



LETTER
1131

Acknowledgments

We would like to thank the anonymous reviewer for the
helpful comments to the earlier version of this paper. This
work was supported by JSPS KAKENHI Grant #16K00099
and DIKTI Scholarships, Directorate Generale of higher Ed-
ucation of Indonesia.

References

[1] S.C.B. de Souza, N. Anquetil, and K.M. de Oliveira, “A study of the
documentation essential to software maintenance,” Proc. 23rd Int’l
Conf. Design of Communication, pp.68–75, Sept. 2005.

[2] D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” Proc. 21st Int’l Conf. Program Comprehension,
pp.83–92, May 2013.

[3] R.P.L. Buse and W.R. Weimer, “A metric for software readabil-
ity,” Proc. 2008 Int’l Symposium on Softw. Testing & Analysis,
pp.121–130, July 2008.

[4] M. Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley Longman, Boston, MA, 1999.

[5] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Lines of com-
ments as a noteworthy metric for analyzing fault-proneness in meth-
ods,” IEICE Trans. Inf. & Syst., vol.E98-D, no.12, pp.2218–2228,
Dec. 2015.

[6] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical
analysis of fault-proneness in methods by focusing on their comment
lines,” Proc. 21st Asia-Pacific Softw. Eng. Conf., vol.2, pp.51–56,
Dec. 2014.

[7] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical
analysis of change-proneness in methods having local variables with
long names and comments,” 2015 ACM/IEEE Int’l Symp. Empirical
Softw. Eng. & Measurement, pp.50–53, Oct. 2015.

[8] T.J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol.SE-2, no.4, pp.308–320, Dec. 1976.

[9] “Angry IP Scanner.” http://angryip.org/, accessed Aug. 26. 2016.
[10] “Eclipse Checkstyle Plugin.” http://eclipse-cs.sourceforge.net/, ac-

cessed Aug. 26. 2016.
[11] “eXo Platform.” https://www.exoplatform.com/, accessed Aug. 26.

2016.
[12] “FreeMind.” http://freemind.sourceforge.net/, accessed Aug. 26.

2016.
[13] “GNU ARM Eclipse Plug-ins.” http://gnuarmeclipse.github.io/, ac-

cessed Aug. 26. 2016.
[14] “Hibernate ORM.” http://hibernate.org/orm/, accessed Aug. 26.

2016.
[15] “PMD.” https://pmd.github.io/, accessed Aug. 26. 2016.
[16] “ProjectLibre.” http://www.projectlibre.org/, accessed Aug. 26.

2016.
[17] “SQuirreL SQL Client.” http://squirrel-sql.sourceforge.net/, ac-

cessed Aug. 26. 2016.
[18] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,

“Mining email social networks,” Proc. 2006 Int’l Workshop Mining
Softw. Repositories, pp.137–143, May 2006.

[19] A. Agresti, Categorical Data Analysis, Wiley Interscience, N.J.,
2002.

[20] A.E. Burhandenny, T. Nakano, H. Aman, and M. Kawahara, “Em-
pirical study of change-prone and fault-prone method prediction fo-
cusing on comment ownership,” Proc. 2016 Int’l Conf. Business &
Inf., pp.219–230, July 2016.

http://dx.doi.org/10.1145/1085313.1085331
http://dx.doi.org/10.1109/icpc.2013.6613836
http://dx.doi.org/10.1145/1390630.1390647
http://dx.doi.org/10.1587/transinf.2015edp7107
http://dx.doi.org/10.1109/apsec.2014.93
http://dx.doi.org/10.1109/esem.2015.7321197
http://dx.doi.org/10.1109/tse.1976.233837
http://dx.doi.org/10.1145/1137983.1138016

