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PAPER

Lines of Comments as a Noteworthy Metric for Analyzing
Fault-Proneness in Methods∗

Hirohisa AMAN†a), Member, Sousuke AMASAKI††, Takashi SASAKI†, Nonmembers,
and Minoru KAWAHARA†, Member

SUMMARY This paper focuses on the power of comments to predict
fault-prone programs. In general, comments along with executable state-
ments enhance the understandability of programs. However, comments
may also be used to mask the lack of readability in the program, there-
fore well-written comments are referred to as “deodorant to mask code
smells” in the field of code refactoring. This paper conducts an empirical
analysis to examine whether Lines of Comments (LCM) written inside a
method’s body is a noteworthy metric for analyzing fault-proneness in Java
methods. The empirical results show the following two findings: (1) more-
commented methods (the methods having more comments than the amount
estimated by size and complexity of the methods) are about 1.6 – 2.8 times
more likely to be faulty than the others, and (2) LCM can be a useful factor
in fault-prone method prediction models along with the method size and
the method complexity.
key words: product metrics, fault-prone method prediction, comments,
regression model

1. Introduction

The successful development of high-quality software sys-
tems requires well-organized management of development
activities [1], [2]. “Programming” is one of the most funda-
mental activities to produce high-quality systems. However,
the programming activity is also easily affected by the pro-
grammer’s mind and experience, i.e., human factors, and the
program could vary considerably in quality—different pro-
grammers may write different programs for the same spec-
ification. While it is natural that there would be some vari-
ations made by the differences among programmers, there
may also be human errors behind their variations. Thus,
it is important to perform quality management during the
programming activity in order to control the quality of pro-
grams being developed.

To effectively perform quality management in the pro-
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gramming activity, there have been many studies about code
metrics [3]–[5]. Size metrics and complexity metrics are
known as especially useful metrics for assessing the qual-
ity of the programs and for detecting poor-quality programs.
This is because programs that are too large and/or too com-
plex are often problematic, i.e., they are likely to have
more potential faults or to be costly in their maintenance
phases [6]–[11]. Such problematic programs should be care-
fully reviewed and tested as early as possible.

While the size and the complexity are useful criteria in
assessing the program’s quality, there is also another aspect
that is related to the human factors described above: a pro-
gram usually consists of not only executable code but also
“comments” written by the programmer. The comments are
important elements in that they express the programmer’s
mind or purpose in regard to their program. In general,
comments are well known as useful artifacts for enhanc-
ing the program comprehensibility, and they may be worthy
of attention in quality management. There are some stud-
ies showing that comments are helpful in understanding a
program [12], [13]. However, comments might be added to
mask the lack of readability in problematic programs; some
programmers want to insert expletive comments into parts
which seem to be hard to understand. Kernighan et al. [14]
recommended rewriting such complex programs rather than
adding careful comments onto those parts. Fowler [15] said
well-written comments are related to “code smells” to be
refactored. While comments themselves are helpful in un-
derstanding the program, they can play roles as “deodorant”
masking a code smell. We consider these pros and cons of
well-written comments to be challenging topics of research.

In this paper, we focus on comments written in a soft-
ware module: we will consider a method in a class to be
a module. In the past, comments have not been major tar-
gets of code metric studies because no comment can affect
the software’s functionality, performance or structure. How-
ever, we consider that comments can also be notable arti-
facts for assessing the program quality. The key contribution
of this paper is to show that Lines of Comments (LCM) can
be a useful metric for analyzing fault-proneness in modules.

The remainder of this paper is organized as follows:
Sect. 2 describes the comments of interest in this paper and
our research motivation. Section 3 presents our empirical
analysis for four OSS products, and discusses the results.
Section 4 gives brief descriptions of related work. Finally,
Sect. 5 describes our conclusions and future work.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 An example of a method written in Java.

2. Lines of Comments, Research Motivation and Aim

This section defines our key metric for comments—Lines
of Comments (LCM)—, and provides clarification of our
research motivation and aim along with a brief description
of our previous work.

2.1 Comments in Methods

We focus on the part describing the sequence of execu-
tions, i.e., the functions/methods. Comments written in-
side a function’s/method’s body, except for commented-out
code†, are often programmer’s notes that explain the con-
tent. Some programmers want to add in-depth explanations
as comments when their code fragments look complicated.

In general, comments help to enhance the readability of
programs [17]. However, well-written comments may be re-
lated with “code smell” in the field of code refactoring [15].
While comments themselves are helpful in understanding
the program, they are sometimes used as “deodorant to mask
code smells.”

Now we define the following metric of comments,
Lines of Comments (LCM):

LCM = the number of lines of comments in a method
body, except for commented-out code.

�
This metric is to quantify the amount of comments in

a method. Figure 1 shows an example of a method written
in Java, which is included in a source file of PMD [18]. The
method has a block of comments from the 5th line to the 9th
line, so LCM= 5.

Note that the LCM does not count comments written

†It is hard to perfectly discriminate the commented-out code
from other comments. A perfect discrimination requires thorough
follow-up investigations for each comment, for each programmer.
However, it would be impossible in practice, so we use Aman’s
algorithm [16] instead. While Aman’s algorithm is a simple algo-
rithm, most of the comments (98.9%) can be successfully discrim-
inated.

“outside” a method’s body. Since comments written out-
side a method’s body are often descriptions of how to use
the method like Javadoc, those comments may not work as
“deodorant” mentioned above. While there might also be
important comments explaining a complicated code, it is
not easy to automatically find such meaningful comments.
Moreover, we need to associate those comments with the
target method in order to analyze the relationship between
the lines of comments and fault-proneness in methods (see
Sect. 3). Therefore, we decided to ignore comments written
outside a method’s body in our measurement of the LCM.
A further analysis considering such comments is one of our
significant future work.

2.2 Research Motivation and Aim

There have been some empirical studies showing relation-
ships between comments and fault-proneness [16], [19]–
[21]. Aman [16], [19] conducted some statistical analyses
at source file level, and reported that commented programs
are more likely to be faulty than the others. While those
results are interesting, the unit of analysis is a bit coarse; a
finer-grained analysis is better to discuss its application to
effective code reviews [22]. There are also studies to ana-
lyze relationships between comments and fault-proneness at
method level rather than source file level [20], [21]. How-
ever, the literature [20], [21] did not consider the case in
which LCM is used along with both the program size
(Lines of Code: LOC) and the program complexity (Cyclo-
matic Complexity: CC) [23]; LOC and CC are well-known
promising metrics for predicting fault-prone programs††.
Thus, we will analyze the power of LCM at method level

††The LOC value of a method is measured by counting the lines
of executable code in the method’s body, except for the comment
lines and the blank lines. The CC value of a method is calculated
as the number of branches plus one in the method’s body. For
example, in the case of the method shown in Fig. 1, LOC = 6 and
CC= 2 because the method has six lines of executable code in line
3 and 10–14, and it has one branch statement (if statement) in line
10.
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when used together with LOC and CC, with considering the
following two cases.

Case 1: we have no data of faults
When we analyze new projects or projects which have
not tracked fault data or file changes, we cannot use
any fault data to build a model for predicting fault-
prone methods. In such cases, we would try to extract
methods whose metric values were abnormal in terms
of their size (LOC), complexity (CC) and the amount of
comments (LCM), in order to predict fault-prone meth-
ods. If LCM helps to detect faulty methods along with
LOC and CC, we can say that LCM is one of generally
useful metrics for analyzing fault-proneness in meth-
ods.

Case 2: we have data of faults
When we know which methods were faulty in the older
version of a product, we can apply a supervised learn-
ing to predict fault-prone methods in the product. In
this paper, we will use the logistic regression model,
which is one of the most popular supervised learning
models in fault-prone module prediction studies. The
fitness of a logistic regression model to the actual data
can be quantitatively evaluated by Akaike Information
Criterion (AIC) [24]. Thus, we can easily see which
set of explanatory variables (metrics) is the best for
a logistic regression model, among all possible com-
binations of metrics: since LOC and CC have been
widely known as good predictors of fault-prone pro-
grams, we evaluate the logistic regression model using
LCM together with LOC and CC, in order to exam-
ine whether LCM is a noteworthy metric for analyzing
fault-proneness in methods. This ease of analysis is the
main reason why we use the logistic regression model.
While a further examination using other models such
as the random forests [10] would be useful to discuss
the practical power of LCM for predicting fault-prone
methods, such a further empirical study is our signifi-
cant future work.

3. Empirical Analysis

This section conducts an empirical analysis of OSS prod-
ucts, and discusses the usefulness of LCM using the results.

3.1 Research Questions

We start with the clarification of our research questions in
this empirical analysis.

RQ1: Can LCM contribute to predictively discriminate
fault-prone methods from the others?

RQ2: Can LCM contribute to enhance the fitness of the lo-
gistic regression model for detecting faulty methods?

�
RQ1 and RQ2 correspond to case 1 and 2, described in

Table 1 OSS projects analyzed in the empirical work.

Number
Project Data collection period of methods

Eclipse Checkstyle 2003/05/05 – 2014/02/15 1, 051
Plugin

Hibernate ORM 2007/06/29 – 2014/02/13 18, 483
PMD 2002/06/21 – 2014/05/02 3, 970

SQuirreL SQL 2001/06/01 – 2014/05/02 6, 116
Client

total — 29, 620

Sect. 2.2, respectively. If both of the answers to RQ1 and
RQ2 are “Yes,” we can conclude that LCM is an important
metric along with LOC and CC. Therefore, we will have to
pay attention to not only the size and the complexity of the
method but also the comment lines in order to build useful
mathematical models for analyzing fault-proneness in meth-
ods.

3.2 Experimental Objects

Our research objects are the methods developed in four
OSS projects: Eclipse Checkstyle Plugin [25], Hibernate
ORM [26], PMD [18] and SQuirreL SQL Client [27]. Ta-
ble 1 shows the data collection periods from the projects
and the numbers of methods developed in the projects. We
selected these projects since they satisfy all of the following
three requirements:

1) their programs are written in Java,

2) their source files are maintained with Git, and

3) their products are popular OSS products.

Requirement 1) is from our data collection tools [28]:
JavaMethodExtractor, CommentCounter, LOCCounter, and
CyclomaticNumberCounter. Requirement 2) is for the ease
of access to data: we can easily make a clone of Git repos-
itory in our local hard disk, so our data collection can be
quickly performed with a low cost. While Subversion is also
a popular repository system, it uses a centralized revision
control model, so we have to access the server whenever we
check the repository. Requirement 3) is for enhancing the
generality of our empirical results. We selected popular OSS
products which are differently sized and are from different
domains; all of them are ranked in the top 20 Java products
at SourceForge.net† which is one of the most popular OSS
community sites. Since it is easy to sort OSS products in de-
creasing order of “popularity” at SourceForge.net, we sorted
Java products by using condition “Sort By: Most Popular”
and selected ones whose source files are managed with Git.
We could have selected popular products at GitHub†† by
searching products with their sort option “most starts” or
“most forks” as well.

†http://sourceforge.net/
††https://github.com/
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Fig. 2 Data collection scheme.

Fig. 3 Tracing the history of method changes.

3.3 Analysis Procedure

We perform our empirical analysis for the above research
questions in the following procedure.

1. Data Collection:

For each OSS product, obtain the latest version of the
source files from the repository, and make a list of the
methods which appear in the files, except for all ab-
stract methods. Then, get the “initial” version of the
methods by tracing their histories of changes, and mea-
sure the LCM, LOC and CC values in those initial ver-
sion of methods. Moreover, for each method, exam-
ine whether the method is faulty or not by checking all
changes (their evolutions) in which the method was in-
volved (see Fig. 2): we decided that a change was for
fixing a bug if the corresponding commitment log in-
cluded one of the words related to bug fixing—“bug,”
“fix” and “defect.”

Notice that we require a suite of data processing in or-
der to trace the history of method changes. Since the
repository manages the source programs at the units of
source files, their commitment logs provide the history
of file-level changes, i.e., not method-level changes. To
determine if a method was changed or not, we need to
compare the method bodies before and after the source
file change. Specifically, we performed the following
three steps for each source file change to collect the
history of method changes (see Fig. 3).

a. Make copies of the source file before and after the
change, respectively.

b. Extract method’s bodies from the source files
through a syntax analysis—the method extraction
can be performed using our data collection tool
JavaMethodExtractor†.

c. Compare the method bodies having the same sig-
nature before and after the change, using diff
utility††. If there is a difference between the
method bodies, the method is considered to be
changed at that time; otherwise, the method is re-
garded as a non-changed one and not included in
the history of the method changes.

2. Correlation Analysis:

Calculate the correlation coefficient for each pair of
metrics, and examine the quantitative independence of
the metrics. If LCM has a strong correlation with LOC
or CC, LCM is considered to be a worthless metric be-
cause LCM cannot provide useful information which is
independent of LOC and CC. We will check the corre-
lations in their log-transformed forms as well, because
some metric-value distributions may be right-skewed.

3. Fault-prone Method Classification (for RQ1):

Build a linear regression model whose objective vari-
able is LCM or log(LCM+1), and the pair of the ex-
planatory variables is { LOC, CC }, { LOC, log(CC) },
{ log(LOC), CC } or { log(LOC), log(CC) } as:

̂LCM = a LOC + b CC + c ,
̂LCM = a LOC + b log(CC) + c ,
̂LCM = a log(LOC) + b CC + c ,
̂LCM = a log(LOC) + b log(CC) + c ,

log( ̂LCM + 1) = a LOC + b CC + c ,
· · ·
log( ̂LCM + 1) = a log(LOC) + b log(CC) + c ,

where a, b and c are constant numbers. We will use
the model best fitted to actual data, in the following
analysis.

The linear regression model can be a discriminator to
classify the methods into the set of “more-commented
methods” and the set of “others” (see Fig. 4). Then, by
comparing the ratio of faulty methods between these
two sets, examine the power of LCM to predict fault-
prone methods in an unsupervised manner.

4. Logistic Regression Analysis (for RQ2):

Build logistic regression models with all possible com-
binations of explanatory variables (see Table 2 and

†http://se.cite.ehime-u.ac.jp/tool/
††We ignored all differences of white space characters.
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Table 2 Explanatory variable(s) used in logistic regression analysis.

explanatory variable
Model no. log(LCM+1) LCM> 0 LCM log(LOC) LOC log(CC) CC

1
√

2
√

3
√

4
√ √

5
√ √

6
√

7
√ √

8
√ √

9
√

10
√ √

11
√ √

12
√ √

13
√ √ √

14
√ √ √

15
√ √

16
√ √ √

17
√ √ √

18
√

19
√ √

20
√ √

21
√ √

22
√ √ √

23
√ √ √

24
√ √

25
√ √ √

26
√ √ √

27
√

28
√ √

29
√ √

30
√ √

31
√ √ √

32
√ √ √

33
√ √

34
√ √ √

35
√ √ √

Fig. 4 Regression-based decision of more-commented methods.

Fig. 5), where the objective variable is whether the
method is faulty (1) or not (0). In Table 2, each row cor-
responds to each model using the marked variable(s) as
their explanatory variable(s), where

• log(LCM+1) is the log-transformed LCM instead
of log(LCM) since there may be non-commented
methods—LCM= 0;
• LCM > 0 is a dummy variable as to whether the

LCM value is non-zero or not;
• “LCM,” “log(LCM+1)” and “LCM > 0” are ex-

Fig. 5 Explanatory variable selection for a logistic model.

clusively selected;
• log(LOC) is the log-transformed LOC;
• “LOC” and “log(LOC)” are exclusively selected;
• log(CC) is the log-transformed CC;
• “CC” and “log(CC)” are exclusively selected.

Now we have to consider an imbalance between the
number of “faulty methods” and the number of “non-
faulty methods”: the number of faulty methods tends
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Table 3 Pearson’s correlation coefficients among LCM, LOC, CC and
their log-transformed ones in Eclipse Checkstyle Plugin.

r log(LOC) LOC log(CC) CC

log(LCM+1) 0.622 0.571 0.484 0.456
LCM 0.514 0.537 0.384 0.380

log(LOC) — — 0.813 0.734
LOC — — 0.689 0.762

Table 4 Pearson’s correlation coefficients among LCM, LOC, CC and
their log-transformed ones in Hibernate ORM.

r log(LOC) LOC log(CC) CC

log(LCM+1) 0.534 0.560 0.511 0.504
LCM 0.444 0.589 0.429 0.502

log(LOC) — — 0.856 0.703
LOC — — 0.699 0.835

Table 5 Pearson’s correlation coefficients among LCM, LOC, CC and
their log-transformed ones in PMD.

r log(LOC) LOC log(CC) CC

log(LCM+1) 0.535 0.635 0.526 0.545
LCM 0.394 0.623 0.390 0.494

log(LOC) — — 0.880 0.688
LOC — — 0.774 0.877

Table 6 Pearson’s correlation coefficients among LCM, LOC, CC and
their log-transformed ones in SQuirreL SQL Client.

r log(LOC) LOC log(CC) CC

log(LCM+1) 0.416 0.434 0.336 0.325
LCM 0.334 0.473 0.301 0.436

log(LOC) — — 0.744 0.485
LOC — — 0.647 0.748

to be significantly lower than the number of non-faulty
methods in many cases. Such an imbalance may lead
to a poor logistic regression model which classifies al-
most all of the methods as non-faulty ones. To avoid
the influence of such an imbalance on our model build-
ing, we will use an oversampling algorithm, Synthetic
Minority Over-sampling Technique (SMOTE) [29].

Then, examine if LCM is a useful explanatory variable
to detect faulty methods through this analysis.

3.4 Result and Discussion: Correlation Analysis

Tables 3 – 6 show Pearson’s correlation coefficients for each
pair of metrics, for four OSS projects; for example, the cor-
relation coefficient between LCM and log(LOC) in Eclipse
Checkstyle Plugin is r(LCM, log(LOC)) = 0.514 (see Ta-
ble 3). The coefficients which appear in the upper half of
the tables show the correlations of LCM with LOC or CC,
including their log-transformed forms. The coefficients in
the lower half of the tables signify the correlations between
LOC and CC, including their log-transformed forms.

For each project, all correlation coefficients in the up-
per half are less than all the ones in the lower half. That
is to say, LCM has weaker correlation with LOC and CC

Table 7 Spearman’s rank correlation coefficients among LCM, LOC,
CC and their log-transformed ones in Eclipse Checkstyle Plugin.

ρ log(LOC) LOC log(CC) CC

log(LCM+1) 0.613 0.613 0.485 0.485
LCM 0.613 0.613 0.485 0.485

log(LOC) — — 0.805 0.805
LOC — — 0.805 0.805

Table 8 Spearman’s rank correlation coefficients among LCM, LOC,
CC and their log-transformed ones in Hibernate ORM.

ρ log(LOC) LOC log(CC) CC

log(LCM+1) 0.403 0.403 0.422 0.422
LCM 0.403 0.403 0.422 0.422

log(LOC) — — 0.768 0.768
LOC — — 0.768 0.768

Table 9 Spearman’s rank correlation coefficients among LCM, LOC,
CC and their log-transformed ones in PMD.

ρ log(LOC) LOC log(CC) CC

log(LCM+1) 0.430 0.430 0.445 0.445
LCM 0.430 0.430 0.445 0.445

log(LOC) — — 0.828 0.828
LOC — — 0.828 0.828

Table 10 Spearman’s rank correlation coefficients among LCM, LOC,
CC and their log-transformed ones in SQuirreL SQL Client.

ρ log(LOC) LOC log(CC) CC

log(LCM+1) 0.353 0.353 0.264 0.264
LCM 0.353 0.353 0.264 0.264

log(LOC) — — 0.694 0.694
LOC — — 0.694 0.694

than the correlations between LOC and CC: r(LCM,LOC)
< r(LOC,CC) and r(LCM,CC) < r(LOC,CC). Similar re-
lations hold for log-transformed ones as well.

We also checked Spearman’s rank correlation coeffi-
cients in view of a skewness of a metric-value distribu-
tion. Tables 7 – 10 show Spearman’s rank correlation co-
efficients for each pair of metrics. Since the correlation
coefficients are computed by using the ranks of the met-
ric values, the log-transformed metrics have the same ranks
with non-transformed ones, and the coefficients with the
log-transformed metrics result in the same coefficients with
the non-transformed ones. The results of Spearman’s rank
correlation coefficients show a trend that is similar to the re-
sults of Pearson’s correlation coefficients: all coefficients in
the upper half of Tables 7 – 10 are less than all the ones in
the lower half, i.e., the correlations of LCM with LOC and
CC are weaker than the one between LOC and CC.

In both Pearson’s correlation and Spearman’s correla-
tion, LCM has moderate positive correlations with LOC and
CC, but the correlations are not strong [30]. Thus, we con-
sider that LCM is not dominated by LOC or CC, so LCM
can provide information which is independent of LOC and
CC. We can use LCM as an explanatory variable along with
LOC and CC in the logistic regression analysis for RQ2.
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Table 11 Best fitted regression models.

Project model

Eclipse
Checkstyle

Plugin

̂LCM =
exp{ 0.471 log(LOC) − 0.0617 log(CC) − 0.573 } − 1

Hibernate
ORM

̂LCM = 0.0684LOC + 0.0994 log(CC) − 0.240

PMD ̂LCM = 0.198LOC − 0.950 log(CC) − 0.699

SquirreL
SQL Client

̂LCM = 0.0364LOC + 0.109CC − 0.245

Table 12 Ratios of faulty methods.

(a) more-commented (b) others
Project (LCM> ̂LCM) (LCM≤ ̂LCM) (a)/(b) p value

Eclipse
Checkstyle

Plugin

36
267

(0.135)

44
784

(0.0561)
2.41 5.01

×10−5

Hibernate
ORM

37
1771

(0.0209)

125
16712

(0.00748)
2.79 1.86

×10−8

PMD
21
288

(0.0729)

128
3682

(0.0348)
2.09 0.00181

SQuirreL
SQL

Client

45
577

(0.0780)

269
55391

(0.0486)
1.60 0.00319

3.5 Result and Discussion: RQ1

As we saw in Tables 3 – 6, there are weak or moderate pos-
itive correlations of LCM with LOC and CC. By utilizing
these weak or moderate correlations, we can establish a cri-
terion to decide whether a method has more comments for
its size (LOC) and complexity (CC) or not. We built lin-
ear regression models with all possible combinations of ex-
planatory variables and an objective variable: the explana-
tory variables are LOC, CC, log(LOC) or log(CC), and the
objective variable is LCM or log(LCM+1). Then, we se-
lected the best fitted model with the maximum adjusted R2

as shown in Table 11. ̂LCM in Table 11 signifies an ex-
pected value of LCM by LOC and CC. That is to say, a
method whose LCM is greater than ̂LCM can be regarded
as a “more-commented method.” By using the regression
expressions in Table 11, we can classify all methods into
two subsets—more-commented methods and the others.

Table 12 shows the ratios of faulty methods (fault ra-
tio) by the method subsets. The table also presents the p
values of χ2 tests whose null hypothesis is “two ratios are
the same,” and the alternative hypothesis is “two ratios dif-
fer.” For all the projects, all null hypotheses are rejected at
the level of significance 0.01. That is to say, we can con-
sider that the ratios of faulty methods significantly differ be-
tween the set of more-commented methods and the set of
others. Indeed, for each OSS project, the fault ratio in more-
commented methods is about 1.6 – 2.8 times higher than the

Fig. 6 Fault ratios in each project.

Table 13 Explanatory variables and AIC values of best logistic regres-
sion models.

Project model no. Explanatory variables AIC

Eclipse
Checkstyle 25∗ (LCM> 0), log(LOC), CC 2423.372

Plugin

Hibernate
ORM

26∗ (LCM> 0), log(LOC), log(CC) 48720.310

PMD 14∗ LCM, LOC, log(CC) 9424.186
SQuirreL

SQL 25∗ (LCM> 0), log(LOC), CC 15093.100
Client

fault ratio in the others (see Table 12 and Fig. 6). There-
fore, the answer to RQ1 results in “Yes”: LCM can play an
important role to discriminate fault-prone methods from the
others, along with LOC and CC. Note that this analysis is
conducted in an unsupervised manner, i.e., the discriminant
models are built by using LCM, LOC and CC only; they do
not use the data of fault.

3.6 Result and Discussion: RQ2

Next, we show the results of the supervised learning by us-
ing the logistic regression model. Table 13 lists explanatory
variables of the best logistic regression models. The quality
of the model is evaluated by Akaike Information Criterion
(AIC) [24] which considers the level of fitness to actual data
and the complexity of the model†. In general, the lower the
value of AIC means the better the logistic regression model
is. Now we consider not only the model whose AIC value is
the minimum (AICmin) among 35 models, but also the ones
such that ΔAIC = AIC − AICmin < 2, to be the best mod-
els, because two different models are considered to be at the
approximately same level of quality when ΔAIC < 2 [31].

In Table 13, the model numbers are asterisked if LCM
†To reduce the influences of randomness in SMOTE algorithm,

we executed the model building 100 times and calculated the av-
erage of their AIC values. AIC values in Table 13 are the average
ones.
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Table 14 Partial regression coefficients of the best logistic regression
models.

Explanatory variables
Project Partial regression coefficients

Eclipse (LCM> 0) log(LOC) CC
Checkstyle Plugin 1.50 0.228 −0.252

Hibernate (LCM> 0) log(LOC) log(CC)
ORM 0.829 0.177 0.093
PMD LCM LOC log(CC)

−0.079 0.156 0.913
SQuirreL (LCM> 0) log(LOC) CC

SQL Client 0.170 0.547 −0.030

appeared in their sets of explanatory variables. For all
projects, LCM appeared in the best models. Therefore,
the answer to RQ2 results in “Yes”: LCM can be a useful
explanatory variable to enhance the fitness of the logistic
regression model for detecting faulty methods along with
LOC and CC. The models are built to better fit actual data
by using not only LOC and CC but also LCM, so they would
be more useful for predicting fault-prone methods in later
versions of the products. Notice that the way of LCM’s con-
tribution differs among OSS projects: Table 14 shows the
averages of the partial regression coefficients of those mod-
els. For three out of four OSS projects (Eclipse Checkstyle
Plugin, Hibernate ORM and SQuirreL SQL Client), the par-
tial regression coefficients of LCM are positive. However,
for the remaining project (PMD), the partial regression co-
efficient is negative. That is to say, it is not always true
that comments “solely” play signs of faulty methods. While
LCM is a worthwhile metric for discussing fault-proneness
in methods, it is important to consider the “combination”
of LCM with LOC and CC—the suite of results shown in
Sect. 3.5 (see Tables 11 and 12) can be a case utilizing the
combination of LCM with LOC and CC in order to detect
fault-prone methods.

From the results for RQ1 and RQ2, we can con-
sider LCM to be a noteworthy metric for analyzing fault-
proneness in methods, in both an unsupervised manner and
a supervised manner.

3.7 Threats to Validity

Our empirical analysis was limited to Java products since
our data collection tools can work for only Java. In many
cases, writing program elements (statements and conditions)
are common among major object-oriented languages, so the
difference in language might not invalidate the contribution
of this paper.

Our fault data collection was based on keyword match-
ing in commitment logs, so we might miss some of the true
faulty methods. Since many studies analyzing code repos-
itories have adopted such a keyword matching approach in
the past [8], [32], [33], we followed the same manner to de-
tect bug fixing commitments. It would be beneficial to con-
duct the same analysis with a different fault-data-collection
mechanism, e.g., collaborating with a bug tracking system.
Moreover, our data collection scheme could not take into ac-

count the file renaming event. Since we focused only on the
events related to file creations and changes (modifications)
in our data collection, we might miss some methods in our
data sets. While there may not be many renaming events,
it can be a concern about our analysis accuracy. It would
be cleared by collecting data using Git’s function for tracing
file renaming events. Historage [34]—a fine-grained ver-
sion control system for Java—would also be a great help in
the data collection.

Our analysis was based on the number of comment
lines, not on the content of comments. While “what the
comments say” would be an important factor, we empir-
ically showed that even “the amount of comments” has a
significant relation with fault-proneness in this paper. How-
ever, we still have another concern about how to measure
the amount of comments accurately. While one program-
mer writes a comment in one line, another programmer may
write the same comment in two or more lines. That is to
say, LCM can vary from person to person for the same com-
ment description. Such a difference in writing comments do
not seem to produce a large variance in LCM values, but
might affect on our empirical results in this paper. There
has been a similar concern about measuring a program size
using LOC—a diversity in programming style may cause
a variance in LOC values. Since both LOC and LCM are
based on the simple measure of lines in source files, there are
some concerns about accurate measurements. Preprocessing
like a normalization of program’s style may be needed to re-
duce such concerns. In this paper, we have used LCM as a
metric of the amount of comments because it is simple and
easy to measure. We will continue to study more accurate
and useful ways to measure the amount of comments in the
future.

4. Related Work

Tenny [12] and Woodfield et al. [13] conducted experiments
about program comprehension, with students and experi-
enced programmers as their subjects, respectively. In their
experiments, the subjects evaluated the ease of understand-
ing some variations of a program which were different in
modular design and in commenting manner (with or without
comments). Their experimental results showed that com-
ments have a positive impact on program comprehension.
However, they did not evaluate the relation of comments
with fault-proneness.

Steidl et al. [35] proposed a framework to evalu-
ate the quality of comments. They evaluated the coher-
ence between header comments† and the name of the cor-
responding method. Their coherence evaluation presents
whether the header comments provide useful information
about the method. They discussed the comments written in-
side method bodies as well, and proposed to use short com-
ments as indicators of parts to be refactored. Moreover, they
described that the existence of long comments may infer a

†Header comments are ones followed by a method declaration.
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lack of external documents, so adding many comments was
not recommended. While they studied valuable relation-
ships between comments and programs, their focus was on
the quality of comments, but not on fault-proneness. Lawrie
et al. [36] also studied the correspondence of comments
and code by using a natural language processing technique,
for an automated quality assessment. However, the litera-
ture [36] did not discuss the fault-prone program prediction.

Aman et al. [16], [19]–[21] conducted some empir-
ical studies of relationships between the amount of com-
ments and fault-proneness. While those results brought a
new worth focusing on comments, the unit of analysis in
[16], [19] was a bit rough grained—at the source file level.
This paper makes a finer grained empirical study of com-
ments at the method level. By analyzing finer data of com-
ments in each method, we provide more detailed and use-
ful findings about the relationships between comments and
code quality. While the analyses conducted in [20], [21]
were at the method level, they did not examine relationships
with LOC and/or CC in detail. This paper analyzes the re-
lationships among LCM, LOC and CC by using all possible
combinations of explanatory variables (35 different models).
Moreover, this paper classifies the methods into two sets—
the more-commented ones and the others—by using LCM,
LOC and CC, and compares the fault ratios between them.

The coding standards (code conventions) such as
MISRA C [37] and Google Java Style [38] are also useful to
control the program quality from the view point of the pro-
gramming style. While coding standards are just guidelines
for the programming style and do not assess the design and
contents of the programs, there are some studies showing re-
lationships between coding standard violations and program
faults [39], [40]. While the point of view focusing on the
relationship between the programming style and the fault-
proneness is common to this work, the papers [39], [40] did
not analyze the power of comments for detecting faults. The
findings of this paper may contribute to an enhancement of
a code convention about comments in a program.

5. Conclusion

This paper focused on comments written inside method bod-
ies, and conducted an empirical analysis on whether Lines
of Comments (LCM) can be a useful metric for analyzing
fault-proneness in methods. The empirical work collected
data of three metrics—LCM, Lines of Code (LOC) and Cy-
clomatic Complexity (CC)—of 29, 620 methods from four
major open source software projects, and performed statisti-
cal analyses from two different aspects: 1) predicting fault-
prone methods by using only LOC, CC and LCM (an un-
supervised classification), and 2) building a useful logistic
regression model to detect faulty methods, by using actual
fault data (a supervised learning).

Analysis 1) classified the methods into two subsets, the
set of more-commented methods and the set of the others,
then compared their fault ratios. The results showed that
more-commented methods are about 1.6 – 2.8 times more

likely to be faulty than the other methods.
Analysis 2) built logistic regression models with all

possible combinations of explanatory variables (35 different
combinations) to detect faulty methods. The results showed
that LCM can be a worthwhile explanatory variable along
with LOC and CC.

From these empirical results, we conclude that LCM
can be a useful metric along with LOC and CC for analyz-
ing fault-proneness in methods. Some programmers want to
add more comments to their programs that seem to be hard
to understand by others, so faulty methods may have more
comments for their size and complexity. Therefore, com-
ments may help to identify poor quality parts while com-
ments themselves are helpful in enhancing the program un-
derstandability. Note that this paper does not say you should
avoid writing comments in your programs; the primary mes-
sage of this paper is to show that comments can be notable
in the program quality management activities.

Our future work includes the following: (1) a further
study considering the severity of faults, (2) a further analysis
using various products from different domains and organiza-
tions (including commercial products), and written in other
languages, e.g., C, C++ and C#, (3) a time series analy-
sis of commenting activities, (4) a further analysis focusing
on contents of comments using natural language process-
ing techniques, (5) a further empirical study using models
not only the logistic regression model but also other models
such as the random forests, (6) a cost-effectiveness evalua-
tion [34], [41] of fault-prone method prediction using LCM,
toward practical use of LCM, and (7) a further study on use-
fulness of LCM using metrics other than LOC and CC, e.g.,
process metrics appeared in the mining software repository
world.
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