
ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem A

Lost in Space

Input: lisp.txt

William Robinson was completely puzzled in the music room; he could not find his triangle in
his bag. He was sure that he had prepared it the night before. He remembered its clank when
he had stepped on the school bus early that morning. No, not in his dream. His triangle was
quite unique: no two sides had the same length, which made his favorite peculiar jingle. He
insisted to the music teacher, Mr. Smith, that his triangle had probably been stolen by those
aliens and thrown away into deep space.

Your mission is to help Will find his triangle in space. His triangle has been made invisible by the
aliens, but candidate positions of its vertices are somehow known. You have to tell which three
of them make his triangle. Having gone through worm-holes, the triangle may have changed its
size. However, even in that case, all the sides are known to be enlarged or shrunk equally, that
is, the transformed triangle is similar to the original.

Input

The very first line of the input has an integer which is the number of data sets. Each data set
gives data for one incident such as that of Will’s. At least one and at most ten data sets are
given.

The first line of each data set contains three decimals that give lengths of the sides of the original
triangle, measured in centimeters. Three vertices of the original triangle are named P, Q, and
R. Three decimals given in the first line correspond to the lengths of sides QR, RP, and PQ, in
this order. They are separated by one or more space characters.

The second line of a data set has an integer which is the number of points in space to be
considered as candidates for vertices. At least three and at most thirty points are considered.

The rest of the data set are lines containing coordinates of candidate points, in light years. Each
line has three decimals, corresponding to x, y, and z coordinates, separated by one or more space
characters. Points are numbered in the order of their appearances, starting from one.

Among all the triangles formed by three of the given points, only one of them is similar to the
original, that is, ratios of the lengths of any two sides are equal to the corresponding ratios of
the original allowing an error of less than 0.01 percent. Other triangles have some of the ratios
different from the original by at least 0.1 percent.

The origin of the coordinate system is not the center of the earth but the center of our galaxy.
Note that negative coordinate values may appear here. As they are all within or close to our

1

galaxy, coordinate values are less than one hundred thousand light years. You don’t have to
take relativistic effects into account, i.e., you may assume that we are in a Euclidean space. You
may also assume in your calculation that one light year is equal to 9.461× 10 12 kilometers.

A succeeding data set, if any, starts from the line immediately following the last line of the
preceding data set.

Output

For each data set, one line should be output. That line should contain the point numbers of the
three vertices of the similar triangle, separated by a space character. They should be reported
in the order P, Q, and then R.

Sample Input

2
50.36493 81.61338 79.96592

5
-10293.83 -4800.033 -5296.238
14936.30 6964.826 7684.818

-4516.069 25748.41 -27016.06
18301.59 -11946.25 5380.309
27115.20 43415.93 -71607.81
11.51547 13.35555 14.57307

5
-56292.27 2583.892 67754.62
-567.5082 -756.2763 -118.7268
-1235.987 -213.3318 -216.4862
-317.6108 -54.81976 -55.63033
22505.44 -40752.88 27482.94

Output for the Sample Input

1 2 4
3 4 2

2

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem B

Family Tree

Input: family.txt

A professor of anthropology was interested in people living in isolated islands and their history.
He collected their family trees to conduct some anthropological experiment. For the experiment,
he needed to process the family trees with a computer. For that purpose he translated them
into text files. The following is an example of a text file representing a family tree.

John
Robert
Frank
Andrew

Nancy
David

Each line contains the given name of a person. The name in the first line is the oldest ancestor
in this family tree. The family tree contains only the descendants of the oldest ancestor. Their
husbands and wives are not shown in the family tree. The children of a person are indented
with one more space than the parent. For example, Robert and Nancy are the children of John,
and Frank and Andrew are the children of Robert. David is indented with one more space than
Robert, but he is not a child of Robert, but of Nancy. To represent a family tree in this way,
the professor excluded some people from the family trees so that no one had both parents in a
family tree.

For the experiment, the professor also collected documents of the families and extracted the
set of statements about relations of two persons in each family tree. The following are some
examples of statements about the family above.

John is the parent of Robert.
Robert is a sibling of Nancy.
David is a descendant of Robert.

For the experiment, he needs to check whether each statement is true or not. For example, the
first two statements above are true and the last statement is false. Since this task is tedious, he
would like to check it by a computer program.

Input

The input contains several data sets. Each data set consists of a family tree and a set of
statements. The first line of each data set contains two integers n (0 < n < 1000) and

3

m (0 < m < 1000) which represent the number of names in the family tree and the number of
statements, respectively. Each line of the input has less than 70 characters.

As a name, we consider any character string consisting of only alphabetic characters. The names
in a family tree have less than 20 characters. The name in the first line of the family tree has
no leading spaces. The other names in the family tree are indented with at least one space, i.e.,
they are descendants of the person in the first line. You can assume that if a name in the family
tree is indented with k spaces, the name in the next line is indented with at most k + 1 spaces.
This guarantees that each person except the oldest ancestor has his or her parent in the family
tree. No name appears twice in the same family tree. Each line of the family tree contains no
redundant spaces at the end.

Each statement occupies one line and is written in one of the following formats, where X and
Y are different names in the family tree.

X is a child of Y.
X is the parent of Y.
X is a sibling of Y.
X is a descendant of Y.
X is an ancestor of Y.

Names not appearing in the family tree are never used in the statements. Consecutive words in
a statement are separated by a single space. Each statement contains no redundant spaces at
the beginning and at the end of the line.

The end of the input is indicated by two zeros.

Output

For each statement in a data set, your program should output one line containing True or False.
The first letter of True or False in the output must be a capital. The output for each data set
should be followed by an empty line.

Sample Input

6 5
John
Robert
Frank
Andrew

Nancy
David

Robert is a child of John.
Robert is an ancestor of Andrew.
Robert is a sibling of Nancy.
Nancy is the parent of Frank.

4

John is a descendant of Andrew.
2 1
abc
xyz

xyz is a child of abc.
0 0

Output for the Sample Input

True
True
True
False
False

True

5

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem C

Push!!

Input: push.txt

Mr. Schwarz was a famous powerful pro wrestler. He starts a part time job as a warehouseman.
His task is to move a cargo to a goal by repeatedly pushing the cargo in the warehouse, of course,
without breaking the walls and the pillars of the warehouse.

There may be some pillars in the warehouse. Except for the locations of the pillars, the floor of
the warehouse is paved with square tiles whose size fits with the cargo. Each pillar occupies the
same area as a tile.

Cargo

Pillar

Goal

Warehouseman

Floor Tile

Tracks of cargo

Tracks of warehouseman

Initially, the cargo is on the center of a tile. With one push, he can move the cargo onto the
center of an adjacent tile if he is in proper position. The tile onto which he will move the cargo
must be one of (at most) four tiles (i.e., east, west, north or south) adjacent to the tile where
the cargo is present.

6

To push, he must also be on the tile adjacent to the present tile. He can only push the cargo in
the same direction as he faces to it and he cannot pull it. So, when the cargo is on the tile next
to a wall (or a pillar), he can only move it along the wall (or the pillar). Furthermore, once he
places it on a corner tile, he cannot move it anymore.

He can change his position, if there is a path to the position without obstacles (such as the cargo
and pillars) in the way. The goal is not an obstacle. In addition, he can move only in the four
directions (i.e., east, west, north or south) and change his direction only at the center of a tile.

As he is not so young, he wants to save his energy by keeping the number of required pushes
as small as possible. But he does not mind the count of his pedometer, because walking is very
light exercise for him.

Your job is to write a program that outputs the minimum number of pushes required to move
the cargo to the goal, if ever possible.

Input

The input consists of multiple maps, each representing the size and the arrangement of the
warehouse. A map is given in the following format.

w h
d11 d12 d13 · · · d1w

d21 d22 d23 · · · d2w

. . .

dh1 dh2 dh3 · · · dhw

The integers w and h are the lengths of the two sides of the floor of the warehouse in terms of
widths of floor tiles. w and h are less than or equal to 7. The integer d ij represents what is
initially on the corresponding floor area in the following way.

0: nothing (simply a floor tile)
1: a pillar

2: the cargo
3: the goal

4: the warehouseman (Mr. Schwarz)

Each of the integers 2, 3 and 4 appears exactly once as dij in the map. Integer numbers in an
input line are separated by at least one space character. The end of the input is indicated by a
line containing two zeros.

Output

For each map, your program should output a line containing the minimum number of pushes.
If the cargo cannot be moved to the goal, −1 should be output instead.

7

Sample Input

5 5
0 0 0 0 0
4 2 0 1 1
0 1 0 0 0
1 0 0 0 3
1 0 0 0 0
5 3
4 0 0 0 0
2 0 0 0 0
0 0 0 0 3
7 5
1 1 4 1 0 0 0
1 1 2 1 0 0 0
3 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 0 1 0 0 0
6 6
0 0 0 0 0 3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 2 0 0 0 0
4 0 0 0 0 0
0 0

Output for the Sample Input

5
-1
11
8

8

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem D

Pump up Batteries

Input: pattern.txt

Bill is a boss of security guards. He has pride in that his men put on wearable computers on their
duty. At the same time, it is his headache that capacities of commercially available batteries are
far too small to support those computers all day long. His men come back to the office to charge
up their batteries and spend idle time until its completion. Bill has only one battery charger in
the office because it is very expensive.

Bill suspects that his men spend much idle time waiting in a queue for the charger. If it is the
case, Bill had better introduce another charger. Bill knows that his men are honest in some
sense and blindly follow any given instructions or rules. Such a simple-minded way of life may
lead to longer waiting time, but they cannot change their behavioral pattern.

Each battery has a data sheet attached on it that indicates the best pattern of charging and
consuming cycle. The pattern is given as a sequence of pairs of consuming time and charging
time. The data sheet says the pattern should be followed cyclically to keep the battery in quality.
A guard, trying to follow the suggested cycle strictly, will come back to the office exactly when
the consuming time passes out, stay there until the battery has been charged for the exact time
period indicated, and then go back to his beat.

The guards are quite punctual. They spend not a second more in the office than the time
necessary for charging up their batteries. They will wait in a queue, however, if the charger is
occupied by another guard, exactly on first-come-first-served basis. When two or more guards
come back to the office at the same instance of time, they line up in the order of their identifi-
cation numbers, and, each of them, one by one in the order of that line, judges if he can use the
charger and, if not, goes into the queue. They do these actions in an instant.

Your mission is to write a program that simulates those situations like Bill’s and reports how
much time is wasted in waiting for the charger.

Input

The input consists of one or more data sets for simulation.

The first line of a data set consists of two positive integers separated by a space character: the
number of guards and the simulation duration. The number of guards does not exceed one
hundred. The guards have their identification numbers starting from one up to the number of
guards. The simulation duration is measured in minutes, and is at most one week, i.e., 10080
(min.).

9

Patterns for batteries possessed by the guards follow the first line. For each guard, in the order
of identification number, appears the pattern indicated on the data sheet attached to his battery.
A pattern is a sequence of positive integers, whose length is a multiple of two and does not exceed
fifty. The numbers in the sequence show consuming time and charging time alternately. Those
times are also given in minutes and are at most one day, i.e., 1440 (min.). A space character or
a newline follows each number. A pattern is terminated with an additional zero followed by a
newline.

Each data set is terminated with an additional empty line. The input is terminated with an
additional line that contains two zeros separated by a space character.

Output

For each data set your program should simulate up to the given duration. Each guard should
repeat consuming of his battery (i.e., being on his beat) and charging of his battery according
to the given pattern cyclically. At the beginning, all the guards start their cycle simultaneously,
that is, they start their beats and, thus, start their first consuming period.

For each data set, your program should produce one line containing the total wait time of the
guards in the queue up to the time when the simulation duration runs out. The output should
not contain any other characters.

For example, consider a data set:

3 25
3 1 2 1 4 1 0
1 1 0
2 1 3 2 0

The guard 1 tries to repeat 3 min. consuming, 1 min. charging, 2 min. consuming, 1 min.
charging, 4 min. consuming, and 1 min. charging, cyclically. Yet he has to wait sometimes to
use the charger, when he is on his duty together with the other guards 2 and 3. Thus, the actual
behavior of the guards looks like:

0 10 20
| | | | | |

guard 1: ***.**.****.***.**-.****.
guard 2: *.*-.*-.*-.*.*.*.*--.*.*-
guard 3: **.***--..**-.***..**.***

where “*” represents a minute spent for consuming, “.” for charging, and “-” for waiting in the
queue. At time 3, the guards 1 and 2 came back to the office and the guard 1 started charging
while the guard 2 went into the queue. At time 6, all the guards came back to the office and the
guard 1 started charging while the others went to the queue. When the charger got available
at time 7, the guard 2 started charging, leaving the guard 3 in the queue. All those happened

10

are consequences of rules stated above. And the total time wasted in waiting for the charger
becomes 10 minutes.

Sample Input

3 25
3 1 2 1 4 1 0
1 1 0
2 1 3 2 0

4 1000
80 20 80 20 80 20 80 20 0
80
20
0
80 20 90
10 80
20
0
90 10
0

0 0

Output for the Sample Input

10
110

11

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem E

The Devil of Gravity

Input: gravity.txt

Haven’t you ever thought that programs written in Java, C++, Pascal, or any other modern
computer languages look rather sparse? Although most editors provide sufficient screen space
for at least 80 characters or so in a line, the average number of significant characters occurring
in a line is just a fraction. Today, people usually prefer readability of programs to efficient use
of screen real estate.

Dr. Faust, a radical computer scientist, believes that editors for real programmers shall be more
space efficient. He has been doing research on saving space and invented various techniques
for many years, but he has reached the point where no more essential improvements will be
expected with his own ideas.

After long thought, he has finally decided to take the ultimate but forbidden approach. He does
not hesitate to sacrifice anything for his ambition, and asks a devil to give him supernatural
intellectual powers in exchange with his soul. With the transcendental knowledge and ability,
the devil provides new algorithms and data structures for space efficient implementations of
editors.

The editor implemented with those evil techniques is beyond human imaginations and behaves
somehow strange. The mighty devil Dr. Faust asks happens to be the devil of gravity. The
editor under its control saves space with magical magnetic and gravitational forces.

Your mission is to defeat Dr. Faust by re-implementing this strange editor without any help
of the devil. At first glance, the editor looks like an ordinary text editor. It presents texts in
two-dimensional layouts and accepts editing commands including those of cursor movements and
character insertions and deletions. A text handled by the devil’s editor, however, is partitioned
into text segments, each of which is a horizontal block of non-blank characters. In the following
figure, for instance, four text segments “abcdef”, “ghijkl”, “mnop”, “qrstuvw” are present and
the first two are placed in the same row.

abcdef ghijkl
mnop

qrstuvw

The editor has the following unique features.

1. A text segment without any supporting segments in the row immediately below it falls by
the evil gravitational force.

12

2. Text segments in the same row and contiguous to each other are concatenated by the evil
magnetic force.

For instance, if characters in the segment “mnop” in the previous example are deleted, the two
segments on top of it fall and we have the following.

abcdef
qrstuvw ghijkl

After that, if “x” is added at the tail (i.e., the right next of the rightmost column) of the segment
“qrstuvw”, the two segments in the bottom row are concatenated.

abcdef
qrstuvwxghijkl

Now we have two text segments in this figure. By this way, the editor saves screen space but
demands the users’ extraordinary intellectual power.

In general, after a command execution, the following rules are applied, where S is a text segment,
left(S) and right(S) are the leftmost and rightmost columns of S, respectively, and row(S) is
the row number of S.

1. If the columns from left(S) to right(S) in the row numbered row(S)−1 (i.e., the row just
below S) are empty (i.e., any characters of any text segments do not exist there), S is
pulled down to row(S)−1 vertically, preserving its column position. If the same ranges in
row(S)−2, row(S)−3, and so on are also empty, S is further pulled down again and again.
This process terminates sooner or later since the editor has the ultimate bottom, the row
whose number is zero.

2. If two text segments S and T are in the same row and right(S) +1 = left(T), that is, T

starts at the right next column of the rightmost character of S, S and T are automatically
concatenated to form a single text segment, which starts at left(S) and ends at right(T).
Of course, the new segment is still in the original row.

Note that any text segment has at least one character. Note also that the first rule is applied
prior to any application of the second rule. This means that no concatenation may occur while
falling segments exist. For instance, consider the following case.

dddddddd
cccccccc

bbbb
aaa

13

If the last character of the text segment “bbbb” is deleted, the concatenation rule is not applied
until the two segments “cccccccc” and “dddddddd” stop falling. This means that “bbb” and
“cccccccc” are not concatenated.

The devil’s editor has a cursor and it is always in a single text segment, which we call the current
segment. The cursor is at some character position of the current segment or otherwise at its
tail. Note that the cursor cannot be a support. For instance, in the previous example, even if
the cursor is at the last character of “bbbb” and it stays at the same position after the deletion,
it cannot support “cccccccc” and “dddddddd” any more by solely itself and thus those two
segments shall fall. Finally, the cursor is at the leftmost “d”

The editor accepts the following commands, each represented by a single character.

• F: Move the cursor forward (i.e., to the right) by one column in the current segment. If
the cursor is at the tail of the current segment and thus it cannot move any more within
the segment, an error occurs.

• B: Move the cursor backward (i.e., to the left) by one column in the current segment. If
the cursor is at the leftmost position of the current segment, an error occurs.

• P: Move the cursor upward by one row. The column position of the cursor does not change.
If the new position would be out of the legal cursor range of any existing text segment, an
error occurs.

• N: Move the cursor downward by one row. The column position of the cursor does not
change. If the cursor is in the bottom row or the new position is out of the legal cursor
range of any existing text segment, an error occurs.

• D: Delete the character at the cursor position. If the cursor is at the tail of the current
segment and so no character is there, an error occurs. If the cursor is at some character,
it is deleted and the current segment becomes shorter by one character. Neither the
beginning (i.e., leftmost) column of the current segment nor the column position of the
cursor changes. However, if the current segment becomes empty, it is removed and the
cursor falls by one row. If the new position would be out of the legal cursor range of any
existing text segment, an error occurs.

Note that after executing this command, some text segments may lose their supports and
be pulled down toward the hell. If the current segment falls, the cursor also falls with it.

• C: Create a new segment of length one immediately above the current cursor position.
It consists of a copy of the character under the cursor. If the cursor is at the tail, an
error occurs. Also if the the position of the new segment is already occupied by another
segment, an error occurs. After executing the command, the created segment becomes the
new current segment and the column position of the cursor advances to the right by one
column.

• Lowercase and numeric characters (‘a’ to ‘z’ and ‘0’ to ‘9’): Insert the character at the
current cursor position. The current segment becomes longer by one character. The
cursor moves forward by one column. The beginning column of the current segment does
not change.

14

Once an error occurs, the entire editing session terminates abnormally.

Input

The first line of the input contains an integer that represents the number of editing sessions.
Each of the following lines contains a character sequence, where the first character is the initial
character and the rest represents a command sequence processed during a session. Each session
starts with a single segment consisting of the initial character in the bottom row. The initial
cursor position is at the tail of the segment. The editor processes each command represented
by a character one by one in the manner described above.

You may assume that each command line is non-empty and its length is at most one hundred.
A command sequence ends with a newline.

Output

For each editing session specified by the input, if it terminates without errors, your program
should print the current segment at the completion of the session in a line. If an error occurs
during the session, just print “ERROR” in capital letters in a line.

Sample Input

3
12BC3BC4BNBBDD5
aaaBCNBBBCb
aaaBBCbNBC

Output for the Sample Input

15234
aba
ERROR

15

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem F

Numoeba

Input: numoeba.txt

A scientist discovered a strange variation of amoeba. The scientist named it numoeba. A
numoeba, though it looks like an amoeba, is actually a community of cells, which always forms
a tree.

The scientist called the cell leader that is at the root position of the tree. For example, in Fig.
1, the leader is A. In a numoeba, its leader may change time to time. For example, if E gets new
leadership, the tree in Fig. 1 becomes one in Fig. 2. We will use the terms root, leaf, parent,
child and subtree for a numoeba as defined in the graph theory.

A → B → C → D
↓
E → F
↓
G

Fig. 1

A ← B → C → D

↑
E → F
↓
G

Fig. 2

Numoeba changes its physical structure at every biological clock by cell division and cell death.
The leader may change depending on this physical change.

The most astonishing fact about the numoeba cell is that it contains an organic unit called
numbosome, which represents an odd integer within the range from 1 to 12,345,677. At every
biological clock, the value of a numbosome changes from n to a new value as follows:

1. The maximum odd factor of 3n + 1 is calculated. This value can be obtained from 3n + 1
by repeating division by 2 while even.

16

2. If the resulting integer is greater than 12,345,678, then it is subtracted by 12,345,678.

For example, if the numbosome value of a cell is 13, 13× 3 + 1 = 40 is divided by 23 = 8 and a
new numbosome value 5 is obtained. If the numbosome value of a cell is 11,111,111, it changes
to 4,320,989, instead of 16,666,667. If 3n + 1 is a power of 2, yielding 1 as the result, it signifies
the death of the cell as will be described below.

At every biological clock, the next numbosome value of every cell is calculated and the fate of
the cell and thereby the fate of numoeba is determined according to the following steps.

1. A cell that is a leaf and increases its numbosome value is designated as a candidate leaf.

A cell dies if its numbosome value becomes 1. If the dying cell is the leader of the numoeba,
the numoeba dies as a whole. Otherwise, all the cells in the subtree from the dying cell
(including itself) die. However, there is an exceptional case where the cells in the subtree
do not necessarily die; if there is only one child cell of the dying non-leader cell, the child
cell will replace the dying cell. Thus, a straight chain simply shrinks if its non-leader
constituent dies.

For example, consider a numoeba with the leader A below.

A → B → C → D → E → F
↓
G → H

(1)

If the leader A dies in (1), the numoeba dies.

If the cell D dies in (1), (1) will be as follows.

A → B → C → E → F

↓
G → H

(2)

And, if the cell E dies in (1), (1) will be as follows.

A → B → C → D (3)

Note that this procedure is executed sequentially, top-down from the root of the numoeba
to leaves. If the cells E and F will die in (1), the death of F is not detected at the time
the procedure examines the cell E. The numoeba, therefore, becomes (3). One should not
consider in such a way that the death of F makes G the only child of E, and, therefore, G
will replace the dying E.

2. If a candidate leaf survives with the numbosome value of n, it spawns a cell as its child,
thereby a new leaf, whose numbosome value is the least odd integer greater than or equal
to (n + 1)/2. We call the child leaf bonus.

17

3. Finally, a new leader of the numoeba is selected, who has a unique maximum numbosome
value among all the constituent cells. The tree structure of the numoeba is changed so
that the new leader is its root, like what is shown in Fig. 1 and Fig. 2. Note that the
parent-child relationship of some cells may be reversed by this leader change. When a new
leader of a unique maximum numbosome value, say m, is selected (it may be the same cell
as the previous leader), it spawns a cell as its child with the numbosome whose value is
the greatest odd integer less than or equal to (m + 1)/2. We call the child leader bonus. If
there is more than one cell of the same maximum numbosome value, however, the leader
does not change for the next period, and there is no leader bonus.

The following illustrates the growth and death of a numoeba starting from a single cell seed
with the numbosome value 15, which plays both roles of the leader and a leaf at the start. In
the figure, a cell is nicknamed with its numbosome value. Note that the order of the children of
a parent is irrelevant.

clock structure comments

0 15 15 plays both roles of the leader and a leaf.

1 23 → 13
↓
11

23 (from 15) is the new leader (again).
13 is the leaf bonus,
and 11 is the leader bonus.

2 17
↑
35 → 5
↓
17
↓
9

17 is the leader bonus.

35 (from 23) is the new leader (again).
5 is from 13.

17 (from 11) spawns
the leaf bonus 9.

3 13
↑
53 → 27
↓
13
↓
7

13 is from 17.

53 (from 35) is the new leader (again).
27 is the leader bonus.
Note that 5 dies out.

18

4 5
↑
5 ← 41 → 21
↓ ↓
5 21
↓
11 → 7

5 is from 13.

41 (from 27) is the new leader,
and spawns the leader and leaf bonuses both 21.
5 (from 53) loses its leadership.

5 15 ← 31 only 31 (from 41) survives,
which spawns the leader bonus 15.

The numoeba continues changing its structure, and at clock 104, it looks as follows.

11 → 7 167 → 11 → 13 → 53
↑ ↑
17 5 167 → 11 → 13 → 53
↑ ↑ ↗
13 ← 5 ← 5 → 167 → 11 → 13 → 53

↓ ↘
5 5 → 2429 → 5 → 161 → 11 → 23 → 13
↓

2429 → 5 → 161 → 11 → 23 → 13

Here, two ambitious 2429’s could not become the leader. The leader 5 will die without promoting
these talented cells at the next clock. This alludes the fragility of a big organization.

And, the numoeba dies at clock 105.

Your job is to write a program that outputs statistics about the life of numoebae that start from
a single cell seed at clock zero.

Input

A sequence of odd integers, each in a line. Each odd integer ki (3 ≤ ki ≤ 9, 999) indicates the
initial numbosome value of the starting cell. This sequence is terminated by a zero.

Output

A sequence of pairs of integers: an integer that represents the numoeba’s life time and an integer
that represents the maximum number of constituent cells in its life. These two integers should
be separated by a space character, and each pair should be followed immediately by a newline.
Here, the lifetime means the clock when the numoeba dies.

19

You can use the fact that the life time is less than 500, and that the number of cells does not
exceed 500 in any time, for any seed value given in the input. You might guess that the program
would consume a lot of memory. It is true in general. But, don’t mind. Referees will use a
test data set consisting of no more than 10 starting values, and, starting from any of the those
values, the total numbers of cells spawned during the lifetime will not exceed 5000.

Sample Input

3
5
7
15
655
2711
6395
7195
8465
0

Output for the Sample Input

2 3
1 1
9 11
105 65
398 332
415 332
430 332
428 332
190 421

20

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem G

Telescope

Input: scope.txt

Dr. Extreme experimentally made an extremely precise telescope to investigate extremely curi-
ous phenomena at an extremely distant place. In order to make the telescope so precise as to
investigate phenomena at such an extremely distant place, even quite a small distortion is not
allowed. However, he forgot the influence of the internal gas affected by low-frequency vibration
of magnetic flux passing through the telescope. The cylinder of the telescope is not affected by
the low-frequency vibration, but the internal gas is.

The cross section of the telescope forms a perfect circle. If he forms a coil by putting extremely
thin wire along the (inner) circumference, he can measure (the average vertical component
of) the temporal variation of magnetic flux: such measurement would be useful to estimate
the influence. But points on the circumference at which the wire can be fixed are limited;
furthermore, the number of special clips to fix the wire is also limited. To obtain the highest
sensitivity, he wishes to form a coil of a polygon shape with the largest area by stringing the
wire among carefully selected points on the circumference.

Your job is to write a program which reports the maximum area of all possible m-polygons
(polygons with exactly m vertices) each of whose vertices is one of the n points given on a
circumference with a radius of 1. An example of the case n = 4 and m = 3 is illustrated below.

������

�������

������

�	���

���

��������
��������

���

���
��
�����

In the figure above, the equations such as “p1 = 0.0” indicate the locations of the n given points,
and the decimals such as “1.000000” on m-polygons indicate the areas of m-polygons.

21

Parameter pi denotes the location of the i-th given point on the circumference (1 ≤ i ≤ n). The
location p of a point on the circumference is in the range 0 ≤ p < 1, corresponding to the range
of rotation angles from 0 to 2π radians. That is, the rotation angle of a point at p to the point
at 0 equals 2πp radians. (π is the circular constant 3.14159265358979323846....)

You may rely on the fact that the area of an isosceles triangle ABC (AB = AC = 1) with an
interior angle BAC of α radians (0 < α < π) is 1

2 sin α, and the area of a polygon inside a circle
with a radius of 1 is less than π.

Input

The input consists of multiple subproblems followed by a line containing two zeros that indicates
the end of the input. Each subproblem is given in the following format.

n m
p1 p2 · · · pn

n is the number of points on the circumference (3 ≤ n ≤ 40). m is the number of vertices to
form m-polygons (3 ≤ m ≤ n). The locations of n points, p1, p2, . . . , pn, are given as decimals
and they are separated by either a space character or a newline. In addition, you may assume
that 0 ≤ p1 < p2 < · · · < pn < 1.

Output

For each subproblem, the maximum area should be output, each in a separate line. Each value
in the output may not have an error greater than 0.000001 and its fractional part should be
represented by 6 decimal digits after the decimal point.

Sample Input

4 3
0.0 0.25 0.5 0.666666666666666666667
4 4
0.0 0.25 0.5 0.75
30 15
0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27
0.30 0.33 0.36 0.39 0.42 0.45 0.48 0.51 0.54 0.57
0.61 0.64 0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87
40 20
0.351 0.353 0.355 0.357 0.359 0.361 0.363 0.365 0.367 0.369
0.371 0.373 0.375 0.377 0.379 0.381 0.383 0.385 0.387 0.389
0.611 0.613 0.615 0.617 0.619 0.621 0.623 0.625 0.627 0.629
0.631 0.633 0.635 0.637 0.639 0.641 0.643 0.645 0.647 0.649
0 0

22

Output for the Sample Input

1.183013
2.000000
3.026998
0.253581

23

ACM International Collegiate Programming Contest
Asia Regional Contest, Tsukuba, 2000-11-12

Problem H

Ether Geometry

Input: ether.txt

Euclid, dwelt in Alexandria, still being convinced firmly that there is no Royal Road to Euclidean
Geometry yet, began to feel gradually, reading newspaper articles, watching TV programs, or
brainwashed by young students, that it might be possible to create such a discipline as e-
Geometry or Geometry on the Internet. In an e-Geometry environment, he could timely discuss
geometry issues with many friends of his including Pythagoras, or he could upload new versions
of his unparalleled famous archive “Elements of Geometry (Stoicheia)” on his WWW site. He
instantly made up his mind to join the Internet.

He started laying ether cable himself from the hub to his terminal in his uniquely shaped study.
He designed the cable route as short as possible.

Figure 1 is a plan of his study. Integers in a pair of parentheses like (0 0) are x- and y-
coordinates of the nearest pillar or hub or terminal. Between two adjacent pillars are walls
indicated by the solid lines. Suppose A is the position of the hub and B his terminal, then the
shortest cable may run as drawn with a broken line.

Your mission is to answer the sequence of the coordinates of turning points of the shortest cable
route including those of both ends A and B for each plan. So, you are to answer as:
(1 1) (2 2) (8 4) (9 5)
for the example of Figure 1.

(0 0) (2 0) (4 0) (6 0) (8 0) (10 0)

(0 6) (2 6) (4 6) (6 6) (8 6) (10 6)

(2 2) (4 2) (6 2) (8 2)

(2 4) (4 4) (6 4) (8 4)

(1 1)

(9 5)

A

B

Figure 1

24

Remember, however, that this is a house of Euclid, the founder and master of Euclidean Geom-
etry. The pillars, hub and terminal are ideal points of Euclidean Geometry. The walls and cable
are line segments in the sense of geometry. Accordingly, the cable may overlap the walls or the
pillars. Hence for Figures 2, 3 and 4, the answers should be as follows: (Hereafter, the layouts
of the study are given by means of the lists of the pillar coordinates.)

Figure 2: Pillars:
(0 0) (2 0) (2 2) (4 2) (4 0) (6 0) (6 6) (4 6) (4 4) (2 4) (2 6) (0 6)
Hub: (1 1), Terminal: (5 1)
The answer: (1 1) (2 2) (4 2) (5 1)

Figure 3: Pillars:
(0 0) (2 0) (2 2) (4 2) (4 0) (6 0) (6 6) (4 6) (4 4) (2 4) (2 6) (0 6)
Hub: (1 1), Terminal: (5 5)
The answer: (1 1) (5 5)
Warning: (2 2) (4 4) are not the turning points.

Figure 4: Pillars:
(0 0) (2 0) (2 2) (4 2) (4 0) (6 0) (6 2) (8 2) (8 0) (10 0) (10 6) (8 6)
(8 4) (6 4) (6 6) (4 6) (4 4) (2 4) (2 6) (0 6)
Hub: (1 1), Terminal: (9 1)
The answer: (1 1) (2 2) (8 2) (9 1)

A B

Figure 2

A

B

Figure 3

A B

Figure 4

All values of coordinates are integers. Walls are parallel to either x- or y-axis. Walls turn right
or left at each pillar for which the coordinates are given. The coordinates of the pillars are given
in the order to look the inside of study to the left. From the last pillar in the list, the next wall
stretches to the first pillar. Every position of the pillar appears only once in the list. Each pillar
is connected to exactly two walls, one of which is parallel to x-axis and the other to y-axis. The
whole wall surrounds the study with single stroke closing line. No walls cross. No wall branches
exist. It is known that no independent walls or other obstacles are found inside the study. Only
one hub and one terminal exist inside the study for each plan, and their positions are always
different.

Submit your program when it could solve for the study of complicated shape like Figure 5. This
layout is included in the sample input.

25

Pillars:
(0 0) (2 0) (2 4) (4 4) (4 0) (14 0) (14 6) (10 6) (10 8) (14 8) (14 14)
(4 14) (4 10) (2 10) (2 14) (0 14) (0 8) (6 8) (6 12) (12 12) (12 10)
(8 10) (8 4) (12 4) (12 2) (6 2) (6 6) (0 6)
Hub: (1 1), Terminal: (1 13)
The answer:
(1 1) (2 4) (4 4) (6 2) (12 2) (12 4) (10 6) (10 8) (12 10) (12 12)
(6 12) (4 10) (2 10) (1 13)

A

B

Figure 5

Input

The input contains one or more data sets of the coordinates of the pillars, hubs and terminals.
Each set begins with a line of an integer n (4 ≤ n ≤ 208), which is the number of the pillars
of the study. The following lines contain the coordinates of pillars, five pairs of coordinates per
line. After these lines comes one line that contains the coordinates of the hub (ax ay) and the
terminal (bx by).

The structure of one complete data set is as follows: (Input/output data do not use parentheses.)

n

x1 y1 x2 y2 . . . x5 y5

x6 y6 x7 y7 . . . x10 y10

x11 y11 . . .
. . . xn yn

ax ay bx by

To make the situation simple, the coordinates of the pillars are all even integers, while those of

26

the hub and terminal are all odd. It is also known that the room size is less than 100 coordinate
units in both x and y directions and the cable length is shorter than 1000 coordinate units.

The input is terminated by a line having one 0 after the last set.

Output

For each data set, print the sequence of the coordinates of turning points of the shortest cable
with those of the hub at the beginning and those of the terminal at the end. Each line should
contain five pairs of coordinates separated by a single space, except the last of these lines which
may contain fewer than five. In each coordinate pair, x and y values should be separated also by
a single space. The last coordinate of each line may be followed by a single space. The answer
of each data set must be followed by a single empty line.

Sample Input

The sample input corresponds to Figures 1 and 5.

20
0 0 2 0 2 2 4 2 4 0
6 0 6 2 8 2 8 0 10 0

10 6 8 6 8 4 6 4 6 6
4 6 4 4 2 4 2 6 0 6
1 1 9 5

28
0 0 2 0 2 4 4 4 4 0

14 0 14 6 10 6 10 8 14 8
14 14 4 14 4 10 2 10 2 14
0 14 0 8 6 8 6 12 12 12

12 10 8 10 8 4 12 4 12 2
6 2 6 6 0 6
1 1 1 13

0

Output for the Sample Input

1 1 2 2 8 4 9 5

1 1 2 4 4 4 6 2 12 2
12 4 10 6 10 8 12 10 12 12
6 12 4 10 2 10 1 13

27

