Calibrating Use Case Points Using Bayesian Analysis

Original Authors:

K. Qi, A. Hira, E. Venson, B. W. Boehm

University of Southern California

紹介者:天嵜 聡介

概要

内容を一言で言うと...

ユースケースポイントをより正確に見積もる方法を提案した

アイデア

- 専門家による見積もりとデータに基づいた見積もりの利用
- ベイズ分析を用いた複数の見積もり結果の統合

貢献

精度が高いユースケースポイント見積もり

手法の概要

Unadjusted Use Case Weight

$$UUCW = \sum_{c \in C} W_c$$
Where:
$$W_c = \begin{cases} 5, & CMPLX_c = Simple \\ 10, & CMPLX_c = Average \\ 15, & CMPLX_c = Complex \end{cases}$$

- 重みをレベル毎に確率分布とみなす
- 分布は正規分布を仮定
 - 平均・分散がパラメータ

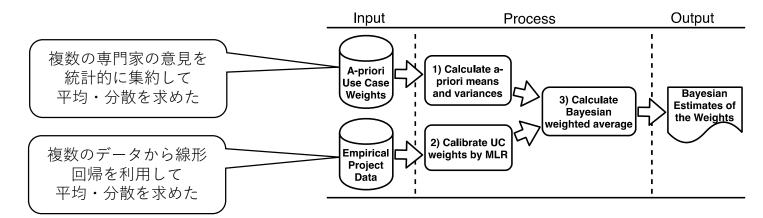


Figure 1: The Bayesian approach of UCPs weight calibration.

結果

Table 5: The accuracy results of the Bayesian (B.), A-Priori (A.), Original (O.), and Regression (R.) estimators by 10-fold cross-validation

D.	Estr.	М.	Std.	P.(.15)	Std.	P.(.25)	Std.	P.(.50)	Std.
D1	B.	0.714	0.196	0.442	0.106	0.492	0,101	0.758	0.075
	A.	0.882	0.167	0.308	0.100	0.358	0.095	0.475	0.086
	Ο.	0.883	0.164	0.308	0,100	0.333	0.095	0.558	0.068
	R	0.892	0.177	0.217	0.085	0.333	0.113	0.475	0.086
D2	B.	0.209	0.021	0.418	0.071	0.618	0.057	0.957	0.022
	A.	0.275	0.022	0,296	0.045	0.488	0.078	0.888	0.047
	Ο.	0.276	0.022	0.268	0.054	0.502	0.081	0.888	0.047
	R	0.285	0.025	0.307	0.067	0.521	0.056	0.873	0.045
D3	B.	1.203	0.218	0,235	0.057	0.407	0.067	0,666	0.054
	A.	1.819	0.731	0.187	0.029	0.273	0.040	0.617	0.038
	0.	1.795	0.714	0.197	0.024	0.284	0.039	0.627	0.039
	R	1.209	0.293	0.265	0.040	0.369	0.049	0.646	0.057

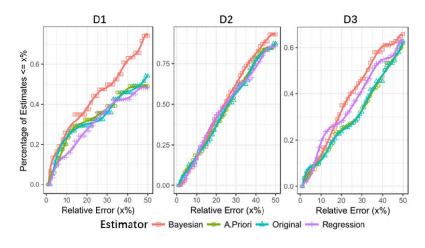


Figure 5: Evaluation of the four size estimators from PRED(0.01) - PRED(0.50) over the three datasets.

• 精度順にデータを並べた場合でも 提案法(赤線)が良い結果

所感

• 提案法による改善は小さいように見える

ベイズ分析で統合するまでは思いつくが詳細に 条件設定して実験しているところに価値