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Abstract—Comments in a source program can be helpful
artifacts for program comprehension. While many comments
are useful documents embedded in source programs, there are
also poorly-informative comments in the real world. In order to
quantitatively assess the value of comments, this paper proposes
applying the Doc2Vec model to comment evaluation. Doc2Vec
is a useful model for vectorizing the content of a document.
In this paper, a Java method is regarded as a document,
and its content is expressed as a vector. Then, two vectors
corresponding to different versions of a method are prepared—
the original version and the comment-erased version—, and the
vector similarity between these two versions are computed. If
the erased comments provided richer information for the source
code, the corresponding vector would have a larger change
through the comment elimination. A method having poorly-
informative comments may be low-quality and might require
more code modifications. This paper analyzes the relationship
between the value of comments in a method and the change-
proneness, using the data collected from five popular open source
software projects. The results show that a method having poorly-
informative comments is likely to be change-prone, i.e., such a
method could not survive unscathed after release.

I. INTRODUCTION

Programmers may write comments in their source programs.
While comments have no impact on the program behavior,
they may provide additional information about the program
and can be useful in program comprehension [1]. For instance,
when a programmer writes a method (function), he/she often
includes comments on how to use the method as well. Such
comments can be a useful manual and a help during the
program’s reuse. In an informal fashion, programmers may
also add comments to their code fragments within a method
body, e.g. as memos explaining their decisions in the source
code. However, not all comments are always useful. Martin [2]
provided 18 “bad” comment categories such as “redundant”
comments, “noise” ones and so on. Corazza et al. [3] reported
that obsolete comments have harmful effects on the code qual-
ity. Kernighan and Pike [4] suggested not adding comments
to “bad” code, and recommended rewriting the code itself
rather than adding descriptive comments. Similarly, Boswell
and Foucher [5] stated that good code is clear and does not
require any additional comments to understand it.

While there have been studies focusing on the presence of
comments or the amount of them in the past (e.g., [6]–[8]),
machine learning-based approaches to comments have also
become more and more popular in recent years (e.g., [9]–
[11]). Pascarella and Bacchelli [11] analyzed the content of

comments, and performed a comment categorization using a
machine learning method. They reported that 59% of comment
lines are not directly related to the commented source code,
and emphasized the importance of understanding the content
of comments from a semantic perspective. Thus, in this paper,
we propose quantitatively assessing the value of comments by
leveraging a well-designed natural language processing (NLP)
model, Doc2Vec [12], [13]. In our proposal, we regard a
method (function) as a document, and express the method’s
content as a vector by using the Doc2Vec model. After that,
we erase comments from the method and express it as a vector
again. Then, we compare the vectors before and after the
comment elimination. As the erased comments provide richer
information, the difference between vectors gets larger. This
is the key of our idea of comment assessment in this paper.

The key contributions of this paper are as follows:
1) We proposed a novel method for assessing the value of

comments in Java methods, which evaluates how rich
the information provided by the comments is.

2) We collected empirical data from five popular open
source software (OSS) projects, and examined the effect
of our method through a change-prone method analysis.
This is because a method having poorly-informative
comments may be low-quality and might require more
code changes after its release. The results showed that a
method having poorly-informative comments is likely to
be change-prone, i.e., such a method would require more
code changes after the release. Our dataset is available
at https://bit.ly/2Pb89Au .

The remainder of this paper is organized as follows: Section
II briefly explains the comments of interest in this paper, and
Section III describes the proposed method using Doc2Vec.
Section IV presents a data analysis as an application of the
proposed method, and Section V describes the related work.
Finally, Section VI gives our conclusion and future work.

II. COMMENTS OF INTEREST

Comments can be classified into various categories in accor-
dance with their aims and positions [10]. Let us take a simple
example shown in Fig. 1, which is a part of the Java source
file. In the figure, four different types of comments appear:
(A) a copyright designation, (B) a simple description of the
class, (C) a programmer’s manual for the method, and (D) an
explanation of the code fragment. Comment (A) is just for
presenting the copyright and does not give any explanation



about the implementation. Comments (B) and (C) play roles
as manuals explaining the aim of the corresponding class and
how to use the corresponding method, respectively. Comment
(D) presents an explanation of the reason why the following
code performs such an operation. Needless to say, there are
other types of comments as well; we omit them due to space
limitations, see [10] for more details.

In Java programs, comments like (B) and (C) are also used
for the automatic generation of a manual through the Javadoc.
On the other hand, comments written inside a method body
like (D) are not used for the manual generation, but they
are usually referred to when programmers review the code.
Hence, type (D) comments would play an important role in
code comprehension: the author of the code might be the only
person who can quickly and properly understand the reason
why the following code “bufferSize << 1” was included
without the comment. We will focus on such comments,
i.e., comments written inside a method body, and propose
quantitatively assessing the value of comment in a method.

III. EVALUATION OF COMMENT IMPACT USING DOC2VEC

A. Doc2Vec

In order to assess comments, we leverage Doc2Vec, a well-
designed NLP technology, which utilizes a machine learning
method with a neural network.

A Doc2Vec model can express a document as a vector. We
can evaluate “semantic” similarity between two documents
by comparing the corresponding vectors. Doc2Vec is based
on Word2Vec [14] which expresses a word as a vector. In
a vector space produced by a Word2Vec model, two words
which are similar in meaning correspond to two vectors which
are close to each other. Furthermore, the relationship among
words is consistent throughout vector operations, e.g., “king –
man + woman = queen.” Doc2Vec is extended to achieve such
a successful vectorization for an entire document. Its algorithm
is implemented in the gensim [13], a Python library.

/**

* Copyright 2016 XXXXXXX

* Licensed under the Apache License, Version 2.0

* ......

*/

/**

* The Observable class that is designed ....

* .....

*/

public abstract class Observable<T> implements ObservableSource<T> {
.......

/**

* Combines a collection of source ObservableSources ...

* .....

* @return an Observable .....

* @see .....

*/

@SchedulerSupport(SchedulerSupport.NONE)

public static <T, R> Observable<R> combineLatest(Iterable<? extends

ObservableSource<? extends T>> sources, Function<? super Object[], ? ex-

tends R> combiner, int bufferSize) {
ObjectHelper.requireNonNull(sources, ”sources is null”);

ObjectHelper.requireNonNull(combiner, ”combiner is null”);

ObjectHelper.verifyPositive(bufferSize, ”bufferSize”);

// the queue holds a pair of values so we need to double the capacity

int s = bufferSize << 1;

return RxJavaPlugins.onAssembly(

new ObservableCombineLatest<T, R>(null, sources, combiner, s, false));

}

Fig. 1. Example of a commented program.

B. Impact of Comments on Source code

Now we regard a method (function) as a document, and
consider applying Doc2Vec to express the method content as
a vector. We prepare two versions of a method, the original
version and the comment-erased version, then we compute
the cosine similarity between two vectors corresponding to
these versions (see Fig. 2). If a comment provided useful and
rich information in the original code, the corresponding vector
would vary significantly from the comment-erased vector. That
is to say, two vectors corresponding to the original version and
the comment-erased version would have a relatively low level
of similarity. On the other hand, if a comment gives not-so-rich
information (see Fig. 3 for example), the corresponding vector
would have a small change after the comment elimination, and
the vector of the original code would have a high similarity
to the vector of the comment-erased one.

Notice that “rich” comments do not always mean “care-
ful” ones. Even carefully-written comments could be poorly-
informative when the comments do not provide any additional
information. For example, when we have a method invocation
“sort(data);” in a program, a comment “// sort the data” is
careful but poor, i.e., it gives no additional information.

C. Comment Assessment Method

We explain the concrete steps of our proposal in this
subsection. Since our focus is on the comments written inside
a method (function) body, we regard a method as a document
in the analysis using Doc2Vec.

1) Doc2Vec model construction:
We need to build a Doc2Vec model trained for the target
software. To train a model, we have to prepare a corpus
of tokens appearing in source programs.
At first, we collect source files from the target software,
and extract the methods from them through a syntax
analysis. After that, we tokenize the content of each
method, and make each method’s token list in which

Fig. 2. An image structure of the proposal.

public static Scheduler initComputationScheduler(Callable<Scheduler> defaultScheduler) {
ObjectHelper.requireNonNull(defaultScheduler, ”Scheduler Callable can’t be null”);

Function<Callable<Scheduler>, Scheduler> f = onInitComputationHandler;

if (f == null) {
return callRequireNonNull(defaultScheduler);

}
return applyRequireNonNull(f, defaultScheduler); // JIT will skip this

}

Fig. 3. Another example of a method having comments.



the programming language’s reserved keywords, sym-
bols (including operators) and English stop words1 are
excluded. For example, we obtain the token list shown
in Fig. 4 for method “combineLatest” appearing in Fig.
1. By gathering such a token list, we prepare a corpus
in which each line corresponds to each method’s token
list. Then, build a Doc2Vec model by using the corpus
as a training dataset.

2) Preparation of token list pair corresponding to the orig-
inal version and the comment-erased version:
For a target method m, we extract m’s token list from the
corpus—we call it T0(m). Next we extract m’s content
from the source file and erase its all comments. Then,
we make m’s token list again—we refer to it as T1(m).

3) Similarity computation:
By using the model constructed in step 1), we compute
the cosine similarity between T0(m) and T1(m)—we
call it SC(m). The lower SC(m) value is, the more
changed m’s semantic vector was, through the comment
elimination. So, the erased comment would provide
richer information to the source code.

□
As an example, we computed SC(·) for the method shown

in Fig. 1: the similarity between the original version and
the comment-erased one was 0.568. On the other hand, the
similarity for the method shown in Fig. 3 was 0.979. That is
to say, we successfully evaluated that the comments within the
method shown in Fig. 1 seem to provide richer information
than the one shown in Fig. 3.

IV. DATA ANALYSIS

A. Aim and Dataset

In this section, we report the data analysis that we conducted
and how it can be used in quality management. In general,
comments tend to enhance the understandability of a program.
However, if a comment provides poor information, it would
not be a help to programmers. Although it is the best to ex-
amine our proposal through a manual experiment of comment
evaluation involving many programmers, that is costly and not
easy to perform. Therefore, we adopted an indirect measure:
the change-proneness of a method, which is quantified by the
number of code changes that have occurred in the method. We
conducted a data analysis to examine the relationship between
our comment evaluation and the change-proneness of methods.

Our dataset consists of methods collected from five OSS
projects shown in Table I. We selected these projects for the
following two reasons: 1) their source files are written in Java,

T R Observable R combineLatest Iterable ObservableSource T sources Function
Object R combiner bufferSize ObjectHelper requireNonNull sources sources
ObjectHelper requireNonNull combiner combiner ObjectHelper verifyPositive
bufferSize bufferSize queue holds pair values need capacity s bufferSize 1
RxJavaPlugins onAssembly ObservableCombineLatest T R sources combiner s

Fig. 4. Token list of method “combineLatest” shown in Fig. 1.

1https://www.textfixer.com/tutorials/common-english-words.txt

TABLE I
ANALYZED OSS PROJECTS.

analyzed size # of # of commented
project version (KLOC) methods methods
Elasticsearch 5.0.0α1 546 12, 354 220
Guava 7.0 49 5, 959 294
OkHttp 3.0.0 46 820 57
RxJava 2.0.0 214 2, 986 290
Spring Boot 1.0.0 51 2, 748 66
total 906 24, 867 927

and 2) they are popular projects. The first reason is due to our
data collection tool since we need to do a syntax analysis and
we developed a tool to analyze Java methods for this study.
The second reason is for enhancing the worth of the analysis
results. Results derived from more popular projects would be
more attractive for more developers and researchers. These
are popular projects which ranked in the top 10 in terms of
GitHub “stars” at the time that we conducted this study2.

B. Procedure

We conducted our data analysis for each project using the
following procedure. The collected data and the constructed
Doc2Vec models are available at https://bit.ly/2Pb89Au .

1) We built a Doc2Vec model by using all methods in-
cluded in the project.

2) For each commented method m, we computed the
evaluation of its comments as SC(m).

3) For each commented method m, we counted the oc-
currences of its code change events (commits) after the
release of the analyzed version; the analyzed version is
shown in Table I.

4) We categorized the commented methods into four cate-
gories according to the quartile of SC(m) distribution—
C1: SC(m) < Q1; C2: Q1 ≤ SC(m) < Q2; C3: Q2 ≤
SC(m) < Q3; C4: SC(m) ≥ Q3, where Q1, Q2 and
Q3 are the 1st, 2nd and 3rd quartile, respectively. Then,
we compared the number of code change events3 that
occurred in the methods among these categories.

C. Results

Table II and Fig. 5 show comparisons of method categories
in terms of the change-proneness: they present the mean and
the standard error of the change counts within each category of
each project, respectively; In Table II, the highest mean value
within a project is emphasized by the boldface and underline.

The highest mean number of change counts within each
software project is observed at C4 or C3. Although not all
projects showed monotonic increase trends of the mean of
change counts from C1 to C4, they seem to have a tendency
where the methods in categories C3 and C4 are likely to be
more change-prone than the ones in C1 and C2. That is to say,
a method having a higher SC(m)—the one whose comments
provided poorer information—would be more change-prone.

2We checked it on March 10th, 2018.
3These change events were counted by using the commit logs stored in the

repositories which were cloned on March 10th, 2018.
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(a) Elasticsearch (b) Guava (c) OkHttp (d) RxJava (e) Spring Boot

Fig. 5. Mean change count and standard error for each category of each project.

TABLE II
MEAN CHANGE COUNT (x) AND STANDARD ERROR (SE) FOR EACH

CATEGORY OF EACH PROJECT.

method category
project C1 C2 C3 C4

x 0.236 0.255 0.527 0.709(a) Elasticsearch SE 0.149 0.087 0.127 0.151
x 0.095 0.123 0.384 0.230(b) Guava SE 0.034 0.051 0.113 0.085
x 0.143 0.083 0.250 1.000(c) OkHttp SE 0.143 0.083 0.112 0.293
x 0.178 0.236 0.222 0.370(d) RxJava SE 0.049 0.058 0.066 0.084
x 2.059 3.813 4.375 4.941(e) Spring Boot SE 1.226 1.134 1.901 1.365

D. Discussions

As a result of our data analysis, we observed that a method,
whose vector did not significantly change through the com-
ment elimination, tends to be change-prone. We cannot say
it is a strong trend due to the observed standard error (SE).
Nonetheless, the difference of mean change counts between
C1 and C4 are clear for all projects (see Fig. 5), so it
seems to be reasonable to say that a method having a high
SC(·) value tends to be change-prone. In such a method, the
erased comments would have smaller impacts on the code,
i.e., the comments would be poorly-informative. Hence, such
comments would not be a help to programmers, and they might
be related to a lower degree of perfection of the method.

In the above results, project “(b) Guava” showed a different
trend in which the maximum mean change count was observed
in C3 rather than C4. By performing additional research on
the SC(·) value distribution, we found that the Guava project
had a different tendency involving SC(·) values: its average
was 0.720 which was the lowest value among the projects
(the mean was 0.823 and the standard deviation was 0.072).
That is to say, Guava is more likely to have more large-impact
comments than other projects. Such a difference may cause the
slightly different trend. Nonetheless, since the change rates
in C1 and C2 are less than that in C3 and C4, a method
whose comments provide richer information tends to be less
change-prone, and this trend is the same as the others. Hence,
the poorness of comments evaluated by our Doc2Vec-based
method would be related to the change-proneness of Java
methods.

However, we have a concern that the length of the method
might also affect the above results. We adopted Doc2Vec for
evaluating comments in Java methods since the size (the num-

ber of dimensions) of vectors generated by the same Doc2Vec
model is constant regardless of the length of documents, i.e.,
Java methods. In this way, we can easily compare two different
versions of methods before and after the comment elimination
even though these methods have different lengths. Nonethe-
less, the vectors before and after the comment elimination may
have a higher similarity if the method is longer and has a lower
proportion of the corresponding comments. For each project,
we computed the Spearman’s rank correlation coefficient (ρ)
between the method length and Sc(·). Then, two out of
five projects showed strong correlations ((a) Elasticsearch:
ρ = 0.701; (c) OkHttp: ρ = 0.729)4. For these two projects,
the length of the methods seem to be a confounding factor and
we cannot properly assess the power of our proposed model.
Thus, we need to examine whether the comment evaluations in
such Java methods were appropriate or not, so we would like to
perform manual evaluations involving many programmers and
to do a further examination in the future. Moreover, it might
also be effective to focus only on a narrower range around the
comments rather than the whole Java method. This is also a
significant part of our future work.

E. Threats to Validity

Since a Doc2Vec model may produce a different vector for
the same content if it was trained by a different corpus, the
corpus selection is our major threat to validity. To mitigate
this threat, we used a major and not-early release version of
a target software because a non-major version or an early
version might be at an immature state. In order to evaluate
the influence of the selected corpus, we would like to conduct
a sensitivity analysis in the future.

While we regarded an identifier as a word in our study, it
might be noise in analyzing the semantics. For example, it
might be better to split “bufferSize” into two words “buffer”
and “size.” We plan to perform a further analysis leveraging
an identifier splitting technique [15] as our future work.

Although the Doc2Vec model is a successful model for
vectoring the content of documents and our proposal is based
on the assumption that a comment would be written for
giving information related to the source code, there is also
room for a further study in order to accurately understand
the value of comments. For example, even if there are long
comments which are totally irrelevant to the source code, our
Doc2Vec-based method would wrongly rate such comments as

4The remaining projects did not have strong correlations: ρ = 0.423, 0.395
and 0.078 for (b) Guava, (d) RxJava and (e) Spring Boot, respectively.



informative ones since they seem to add additional information
with many (but irrelevant) words. Our above assumption can
be a threat to validity, and we need to perform a further study
together with manual evaluations of comments in the future.

V. RELATED WORK

Thomas et al. [16] leveraged the topic model to evaluate a
semantic similarity among source programs, and applied the
computed similarities to prioritize test cases (programs) for
an efficient regression testing. In their approach, they tried
obtaining a higher test coverage by selecting fewer test cases
which are dissimilar to the already-selected test cases. Their
study is a notable previous work applying an NLP technique
to source program analysis. While the fundamental notion—
an application of an NLP technique to evaluate a similarity
between programs—is common, we utilized such a technique
for evaluating the comments.

Steidl et al. [10] analyzed a correspondence relationship
between the content of comments and the commented code.
They proposed evaluating those comments by using the oc-
currence rate of words which are common or similar to
the corresponding identifiers. For example, when there is a
comment “removes all defined markers” followed by method
“removeAllMarkers(),” three out of four words in the comment
appear in the method’s name, i.e., the occurrence rate is 0.75.
Steidl et al. considered a comment would not provide useful
information if its occurrence rate is greater than 0.5. Their
work is a remarkable previous work to evaluate the usefulness
of comments. We focused on yet another point of view related
to the semantics through the Doc2Vec model.

Corazza et al. [3] focused on the “coherence” of comments
and corresponding implementations of methods—a coherent
method has well-written lead comments which properly de-
scribe the goal and/or the implementation details of the meth-
ods, together with the details about the parameters and their
intended use. Through a lot of manual assessments on Java
methods collected from open source applications, they created
a useful dataset of method coherence, and discussed the real
trends of relationships between method implementations and
their lead comments. While our fundamental concept of com-
ment assessment is common to their work, we tried making
assessments of comments from a perspective of document
similarity. By performing a manual assessment similar to the
work of Corazza et al., we would prepare a better corpus for
training our Doc2Vec model. It is another significant part of
our future work.

VI. CONCLUSION

We focused on the comments written within a method body,
and proposed evaluating these comments by using a Doc2Vec
model, a popular NLP model. In our proposal, for a method
having comments, we prepare two versions of the method: the
original version and the comment-erased version. Then, we
compare these two versions using the Doc2Vec vectorization
and the computation of cosine similarity between the corre-
sponding vectors. If a comment provided richer information in

a method, the corresponding vector would change significantly
due to the comment elimination: this is our key idea. As an
application of our proposal, we conducted a data analysis using
five popular OSS projects. Then, we found that a method
whose comments provided poorer information tended to be
more change-prone. Poorly-informative comments would not
be a help to programmers, and they might be related to a lower
degree of perfection in the method.

Our future work includes: (1) a further examination of
the proposed model by using manual evaluations; (2) further
analyses with different corpora produced by using source files
of earlier or later versions, or by performing a more detailed
analysis of identifiers; (3) an improvement of our model to
reduce the impact of the method length, e.g., by focusing on
a narrower range around the comments.
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