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Abstract—A successful naming of variables is key to making
the source code readable. Programmers may use a compound
variable name by concatenating two or more words to make
it easier to understand and more informative. While each
compound variable name itself may be easy-to-understand, a
collection of such variables sometimes makes a “confusing”
variable pair if their names are highly similar, e.g., “ship-
pingHeight,” vs. “shippingWeight.” A confusing variable pair
would adversely affect the code readability because it may cause a
misreading or a mix-up of variables. Toward automated support
for enhancing the code readability, this paper conducts a large-
scale investigation of compound variable names in Java programs
to find quantitative criteria of the confusing variable pairs.
The investigation collects 31,806,749 pairs of compound-named
variables from 684 open-source Java projects and analyzes them
from two different perspectives of name similarity: the string
similarity and the semantic similarity.

Index Terms—Confusing variable names, string similarity,
semantic similarity.

I. INTRODUCTION

Programmers usually declare and use variables in their
programs. Variables are fundamental components of programs,
and variables’ names have significant impacts on code read-
ability [1]–[3]. Well-chosen names would make the code
readable and help developers understanding and reviewing the
program smoothly. On the other hand, poorly-chosen names
degrade the code readability: if we replace the variable names
with unrelated (meaningless) strings, we can easily obfuscate
our programs [4], [5].

To make a variable name easy to understand, many pro-
grammers use English dictionary words or well-known abbre-
viations for the name [6]. The usefulness of choosing fully
spelled words or abbreviations for variable names has been
empirically proved in the past [7], [8]. When the role of the
variable becomes complex, it is helpful to use a compound
name [9] that is organized by two or more words, like
“positionOfPlayer.” Because a compound name corresponds
to a phrase describing the variable, many programmers and
code reviewers can easily understand the variable’s role. The
positive effect provided by a compound name has also been
proved in empirical studies [10].

However, there is also a negative effect of compound names
on code readability. Tashima et al. [11] proposed the notion
of confusing variable pairs, where two variables have highly
similar names like “lineIndex” and “lineIndent.” Due to their

high similarity, they cause a risk of misreading or mixing up
variables during the programming or code review. Thus, they
may adversely affect the code readability even though each
variable name is understandable. Aman et al. [12] reported
an empirical study showing that confusing variable pairs
are related to a deterioration of code quality. Hence, it is
significant to detect confusing variable pairs for successful
code readability management.

Although the previous studies [11], [12] measured the
similarity between variable names using the Levenshtein dis-
tance [13], they missed the semantic perspective. For example,
we may consider “stackNum” to be similar to “stackCount”
because we can use the word “count” instead of “number”
(“num”) in many contexts. It is better to consider both
the string and semantic similarity to examine the confusing
variable pairs. This paper conducts a large-scale investigation
of compound variable names to analyze the name similarity
from both the string similarity and the semantic similarity
perspectives as a preliminary work toward an automated de-
tection of confusing variable pairs. The analysis result presents
quantitative criteria to detect confusing variable pairs.

II. COMPOUND VARIABLE NAME AND NAME SIMILARITY

In this section, we describe the variable name of interest, the
compound name. Then, we introduce the notion of confusing
variable pairs and explain metrics for detecting those pairs.

A. Compound Variable Name

It is desirable that a variable’s name clearly expresses
its role in the program. To this end, programmers would
choose a fully spelled word or its abbreviated form as a
variable name. However, there are also cases that it is hard
to express a variable’s name by a single word because its role
is complicated. For such variables, programmers tend to use
compound names that consist of two or more terms (words
or abbreviations). A compound variable name is produced by
concatenating terms. The camelCase and the snake case are
the most popular naming styles [9]. In the camelCase, we
join all terms and capitalize the initial character of the second
or later terms to indicate the separation. In the snake case,
we indicate the separation of terms by the underscore (“ ”).
For example, if we make a name from “data file name,” the



compound names in the camelCase and the snake case can be
“dataFileName” and “data file name,” respectively.

Some programmers produce a compound variable name
by concatenating two or more terms without any indication
of separation, such as “filename”(file + name), because the
element terms are simple and widely used. Although it is
challenging to define the simple-concatenated compound name
clearly, we regard a name as a compound variable name in this
paper if we can split it into English dictionary words or well-
known abbreviations1.

B. Confusing Variable Pair

A compound variable name seems to be a phrase describing
the role of the variable. Thus, it is understandable for many
programmers and code reviewers without additional descrip-
tions, such as the comments in the program. However, when
we have two or more well-described compound names in our
code fragment, they may cause a side effect on the code
readability. If those compound variable names are similar to
each other, they can be confusing variable pairs [11], [12].
Some programmers or code reviewers mix up those variables
during the programming or reviewing activities, even though
each compound variable name is understandable.

Figure 1 shows an example of the situation where a
programmer encounters confusing variable pairs during their
programming on Eclipse, an integrated development environ-
ment (IDE). In this example, the programmer is about to
write “shippingWeight,” and the IDE suggests candidates
whose names are highly similar to each other. Because the
first six candidates are the same-typed variables, the IDE
would not warn even if the programmer selected a variable
incorrectly. Moreover, suppose the programmer wrongly chose
“shippmingMaxWeight” for it. In that case, the programmer
and the code reviewers may not quickly find the mistake
because “shippingWeight” and “shippmingMaxWeight” are
highly similar to each other in terms of both the string
similarity and the semantic similarity. Although the above case
shown in Fig. 1 is just an example, it illustrates the risk of the
variable mix-up caused by confusing variable pairs.

Here, we formally define the confusing variable pair below.
Definition 1 (confusing variable pair): We consider two

variables v1 and v2 in a program P , and their names are
name(v1) and name(v2). Let the line number intervals S(v1) =
[b1, e1] and S(v2) = [b2, e2] be the scopes of v1 and v2,
respectively; That is, v1 is available between the b1-th line

Fig. 1. An example of confusing variable names that we may encounter
during our programming activity.

1We leverage GNU Aspell 0.60.6.1 to check words.

and the e1-th line in P , and v2 is available between the b2-th
line and the e2-th line. Let type(v1) and type(v2) be the data
types of v1 and v2, respectively. We define the pair (v1, v2) to
be confusing variable pairs if it satisfies all of the following
conditions: (1) S(v1) ∩ S(v2) ̸= ∅, (2) type(v1) = type(v2),
and (3) name(v1) and name(v2) are similar to each other.

Condition (1) focuses on whether both variables are avail-
able simultaneously or not. If there is an overlap between
their scopes, they can be candidates of a confusing variable
pair. Condition (2) filters out different-typed variables because
it is easy to find a mix-up case when the variable’s type
differs from the expected one; The IDE or the compiler would
issue a warning. Although there are some combinations of
different data types such that one type can be a substitute for
another type, we adopt the above straightforward definition in
this paper. Because the type compatibility checking requires
a detailed and rich program analysis, it is costly in our large-
scale investigation; it is our future work. Condition (3) remains
to be clearly defined. To overcome it, we have to define
the similarity between variables. There can be two different
perspectives: the string similarity and the semantic similarity.
We describe these similarities in Sections II-C and II-D.

C. String Similarity

When two variable names have a common part (substring),
they might be similar; The larger the common part is,
the more similar they look. For example, a variable name
“shippingHeight” looks more similar to “shippingWeight”
than “productHeight.” We can quantify such a string sim-
ilarity by focusing on how many characters we should edit
to convert one name to another. A character edit is one of
character addition, deletion, and substitution. Then, the least
number of character edits to convert can be an index of string
dissimilarity, referred to as the Levenshtein distance [13].

We can quantitatively compare the difference of the sim-
ilarity in the above example as follows. For the sake
of convenience, we denote the Levenshtein distance be-
tween name1 and name2 by dL(name1,name2). Then,
we obtain dL(“shippingHeight”, “shippingWeight”) = 1 and
dL(“shippingHeight”, “productHeight”) = 8, where, for the
first pair, we can convert name1 to name2 by only substituting
“H” with “W,” i.e., the least number of required character edits
is one; On the other hand, for the second pair, we need eight-
character substitutions to convert name1 to name2.

Although dL reasonably measures how two names look
different, the length of the name may also affect the simi-
larity evaluation. For example, while the following two pairs
have the same Levenshtein distance (dL(·, ·) = 1), the sim-
ilarity level does not look identical: (“fileA”, “fileB”) and
(“distanceBetweenAandB”, “distanceBetweenAandC”).
To take account of such a difference as well, we consider the
following normalized Levenshtein distance, ndL:

ndL(name1,name2) =
dL(name1,name2)

max{ λ(name1), λ(name2) }
,



where λ(namek) is the length of namek (for k = 1, 2). Then,
we can successfully reevaluate the above example pairs: ndL
values of (“fileA”, “fileB”) and (“distanceBetweenAandB”,
“distanceBetweenAandC”) are 0.2 and 0.05, respectively.

Because the distance is an inverse measure of similarity, we
use the following Levenshtein similarity, simL, in this paper:

simL(name1,name2) = 1− ndL(name1,name2) .

The range of simL value is [0, 1]. The higher value the pair
has, the more similar they are.

D. Semantic Similarity

There have been techniques for quantitatively representing
the semantics of words in natural language processing studies:
word embeddings. An embedding is a numerical vector repre-
sentation of a word. Word2Vec [14] is one of the most popular
models to produce word embeddings using the neural network.
It learns the associations of words in the training data (texts),
and Word2Vec uses the trained network to produce the cor-
responding word vectors. Because semantically similar words
are likely to appear in a similar context, the corresponding
vectors can also become close in the resulting vector space.
That is, we can evaluate the semantic similarity between words
using the closeness between the corresponding vectors. To
produce the document (sequence of words) embedding rather
than the word embedding, an extended version of Word2Vec
has been developed: Doc2Vec [15]. We can also evaluate the
semantic similarity between documents using Doc2Vec.

By splitting a compound variable name into its element
words, we can regard the variable name as a document. Hence,
we can also measure the semantic similarity between variable
names using Doc2Vec through such a name splitting. We
explain the steps to produce document vectors for compound
variable names below.
(1) Name Splitting: We split a compound variable name by
the camelCase or the snake case2. For a simply-concatenated
name like “filename,” we consider all available patterns of
splitting into two terms3 and check if both terms are in a
dictionary or not.
(2) Preprocessing: We decapitalize all words to avoid the
difference in letter case affects the vectorization. After that, we
perform the stemming of the word to uniform the word styles
because a word can appear in different styles like “list,” “lists,”
“listed,” and “listing.” Furthermore, we sometimes encounter
a variable name using a number such as “inputBuffer2.”
Although the number is a part of the name, it would not be
essential for considering the meaning of the variable name.
To avoid any impact caused by such a number, we replace
all numbers appearing in a compound variable name with the
special token “<num>.”
(3) Vectorizing: After the above processings of variable
names, we train the Doc2Vec model and vectorize those

2We used the regular expressions “[a-z][A-Z]” and “_” as our simple
delimiters.

3We split a name so that both the lengths of split names are longer than
two characters to avoid many wrong extractions of “a” or “an.”

names. By computing the similarity between vectors, we can
obtain the degree to which two names are semantically similar.
In this study, our metric of similarity between vectors is the
cosine similarity. The range of similarity is [−1, 1]; The higher
value the variable pair has, the more similar they are.

Through the above steps, for instance, we would be able to
automatically judge that “stackNum” is similar to the follow-
ing names: “numStack,” “countStack,” and “stackCount.”

III. QUANTITATIVE INVESTIGATION

We conducted a large-scale investigation of compound vari-
able names. In this section, we report and discuss the results.

A. Aim

Toward an automated detection of confusing variable pairs,
we need to develop reasonable criteria regarding the variable
name similarity. By examining the name similarity trends
(distributions) in the actual programming world, we can see
a practical threshold level of similarity to judge whether a
pair of compound variable names is confusing or not. Our
investigation aims to find such criteria in terms of string
similarity and semantic similarity.

B. Data Collection

We collected 1000 repositories of open-source Java projects
from GitHub. We selected them by searching projects with
the keyword “Java” in the descending order of the “stars”
score. The number of collected projects (1000) is from the
limitation of GitHub API. We developed a program analysis
tool, JavaVariableScopeExtractor, that analyzes Java source
files to extract variables with their data type and scope
information. Because our tool supports only Java, we had to
limit our investigation into Java projects.

We performed our data collection in the following proce-
dure; Table I shows our environment.
(1) We obtained project information via GitHub API and made
clones of Git repositories for each project.
(2) We analyzed all Java source files and extracted all variables
using our tool. Variables include local variables, methods’
formal parameters, and classes’ fields. In our analysis, we ex-
cluded programs for testing, demo, or documentation because
they are not the primary products of the development.
(3) We checked the names of all variables and picked up
compound variable names from them. Then, we built the set of
variable pairs where two variables are simultaneously available

TABLE I
DATA COLLECTION ENVIRONMENT AND HYPERPARAMETER

Item Description
CPU Intel Core i5-4570 3.20GHz
Memory 16GB
OS Linux 3.10.0
Python Python 3.6.8
stemmer PorterStemmer on nltk 3.5
Doc2Vec Doc2Vec on gensim 3.8.3 (vector size=300, window=2,

dm=1, min count=1, epochs=100)



within a scope, and their data types are the same.
(4) For each variable pair, we measured the string similarity
and the semantic similarity to examine if it can be a confusing
variable pair or not.

C. Results

As a result of our data collection, we successfully analyzed
60,908 Java source files from 684 projects4. The remaining
316 projects corresponded to any of the following ones: (a)
they have no Java source files, (b) all source files are to be
excluded ones such as test programs, or (c) our analysis tool
failed to parse the source files because multi-byte characters
appeared in the variable names.

From the above source files, we collected 1,377,219 vari-
ables, and 563,445 out of them (40%) were the variables with
compound names. By checking their types and scopes, we
found 31,806,749 pairs as candidates for confusing variable
pairs in this study.

We measured the string similarity and the semantic similar-
ity for each pair. Figure 2 and Table II show the distributions of
similarity scores and the descriptive statistics. Because there
are the variable pairs where two names are the same5, the
maximum string similarity is 1.0; Notice that Doc2Vec’s vector
production has an instability caused by random numbers, so
the maximum semantic similarity is not equal to 1.0 even if
the names are the same.

From the results of similarity measurement, we can see
that most variable pairs have relatively low similarity in terms
of both the string similarity and the semantic similarity: the
medians of the string similarity and the semantic one are 0.222
and 0.115, respectively. In other words, there are not many
variable pairs such that they look confusing (highly similar)
in the actual Java programming world. We believe such a trend
is natural and consistent with our programming practice, i.e.,
we are likely to avoid using the confusing variable pairs in
our programs.
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Fig. 2. Histograms of similarity scores.

TABLE II
DESCRIPTIVE STATISTICS OF SIMILARITY SCORES

Min 25% 50% Mean 75% Max
String 0.000 0.159 0.222 0.230 0.281 1.000
Semantic –0.572 0.034 0.115 0.151 0.221 0.988

4Our dataset is available at https://bit.ly/3zH8HEd.
5For instance, one variable is a class’s field, and another is a local variable

in a method.

D. Discussion

To detect confusing variable pairs while considering the
similarity distribution, we use the mean (µ) and the standard
deviation (σ). When a value is greater than µ + 3σ, we can
regard it as an extremely high value. In the resulting dataset,
µ and σ are µstr = 0.230, σstr = 0.130, µsem = 0.151, and
σsem = 0.179, where the subscripts str and sem signify the
string similarity and the semantic one, respectively. Then, we
obtain thresholds of similarity as: µstr + 3σstr = 0.619 and
µsem + 3σsem = 0.686 . By using the above thresholds, we
consider criteria of confusing variable pairs. To reasonably
combine two measures, we need to pay attention to their
correlation. We examined the correlation between the simi-
larity scores using Spearman’s ρ, and we confirmed no strong
correlation between them (ρ = 0.177). Hence, we can integrate
the above criteria in an orthogonal way, i.e., our criteria are:

• Is the string similarity is higher than 0.619?, and
• Is the semantic similarity is higher than 0.686?

As a result, 348,909 pairs and 383,593 pairs have the string
similarities and the semantic similarities higher than the above
thresholds, respectively (except for the same name pairs);
161,224 pairs (0.5%) satisfied both of two criteria. Table III
shows samples from our data: No.1–4 are the pairs satisfying
both of the above criteria, and No.5–8 are the ones satisfying
only one of them. Pair No.1 looks like a similar pair, but it may
not be hard to distinguish them; We may say its confusing level
is relatively “Low” because both similarity scores are close
to the thresholds. However, pair No.4 must be a confusing
variable pair; We would say its confusing level is “High.”

Pairs No.5–6 are samples of high string similarity, but low
semantic similarity; Pairs No.7–8 are opposite cases, i.e., pairs
with low string similarity but high semantic similarity. The
former samples may look like confusing pairs as the previous
studies [11], [12] because of their high string similarity scores.
Furthermore, our proposal covers the latter samples as well.
Although they may not look like similar names in terms of
string similarity, there is a risk of mixing those variables while
considering the variables’ roles because of their semantically
similar names.

TABLE III
EXAMPLES OF STUDIED VARIABLE PAIRS

Similarity
No. Variable Name Pair String Semantic

sentinelConnectionTimeout1 0.640 0.758sentinelSoTimeout
lookupDefineClassMethod2 0.739 0.889lookupDefineClass
singleFlatMapObservable3 0.852 0.824singleFlatMapHideObservable
btGeneric6DofSpringConstraintDataName4 0.974 0.903btGeneric6DofSpring2ConstraintDataName

getAlgorithmConstraints5 0.957 0.131setAlgorithmConstraints
GradientColor android centerY6 0.862 0.398GradientColor android endY

PUBLIC KEY7 0.100 0.921publicKey
edenUsed8 0.333 0.897survivorUsed



From these results, our approach seems to detect confusing
variable pairs successfully. Because the above thresholds of
similarity is an example using the notion of “µ + 3σ,” we
can leave them as user-adjustable parameters when imple-
menting an automated detection tool. To decide more practical
thresholds, we need to analyze the relationship of the above
similarity scores with the manual evaluations. Toward a better
threshold setting, we plan to conduct a questionnaire study
regarding the variable names’ confusing level in the future.

E. Threats to Validity

1) Internal Validity: The way of splitting variable names
can be a threat to internal validity. Although we split com-
pound names using simple regular expressions, they might
cause inappropriately split names in our dataset. A richer
splitting tool6 might be a better choice in our investigation.

We measured the semantic similarity using the Doc2Vec
model. Because its performance depends on the hyperparam-
eters, their setting can be our threat to internal validity. To
mitigate this threat, we preliminary experimented with vari-
ous combinations of two major hyperparameters, vector size
and epochs. Because the Doc2Vec model steadily produced
almost the same vectors for the same names when we set
vector size=300 and epochs=100, we used them in our
study. However, there might be a better setting, and we might
miss a more proper model for evaluating semantic similarity.

2) Construct Validity: We adopted the Levenshtein similar-
ity as our measure of the string similarity. Moreover, we used
the cosine similarity between the document vectors obtained
by Doc2Vec, to evaluate the semantic similarity. Although
these measures are widely used ones, there might be other
better ways of measuring those similarities. To ensure that our
measures properly quantify the similarity of interest, we need
to prepare a dataset of variable pairs where the similarities are
evaluated manually. Because it is costly and not easy work,
we would discuss it continuously as a future issue.

3) External Validity: Although we conducted a large-scale
investigation and analyzed many variable names in various
programs, it is limited to open-source Java projects. Other
projects using other languages or commercial projects may
lead to different results. Because there are language-specific
features or practices in naming variables, we plan to perform
other investigations on other language projects in the future.

IV. CONCLUSION AND FUTURE WORK

In this paper, we focused on compound variable names
appearing in programs. Although compound names themselves
are easy to understand, there is a risk that they can be
confusing variable pairs when their names are highly similar.
Because the confusing variable pairs may adversely affect the
code readability, it is better to detect such pairs automatically.
Toward the development of an automated detection tool, we
conducted a large-scale investigation of compound names.

In our study, we collected 31,806,749 variable pairs from
684 open-source Java projects. Then, we measured the name

6e.g., Spiral, https://github.com/casics/spiral

similarity of them from two different perspectives: the string
similarity and the semantic similarity. We used the Levenshtein
distance and the Doc2Vec as our methods for measuring those
similarities. As a result, we found that we may use 0.619 and
0.686 as the thresholds of the string similarity and the semantic
similarity to detect confusing variable pairs, respectively. Note:
Our dataset is available at https://bit.ly/3zH8HEd.

Our future work includes (1) developing an automated de-
tection tool using our findings, (2) conducting a questionnaire
study on practical thresholds of similarity scores, (3) further
investigations on other software projects using languages other
than Java, and (4) considering the ambiguity of variable names
from the perspective of linguistic antipatterns [16].
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