A Trend Analysis of Test Smells
in Python Test Code Over Commit History

Yuki Fushihara*, Hirohisa Aman’, Sousuke Amasaki?, Tomoyuki Yokogawai and Minoru Kawahara'

*Department of Computer Science, Faculty of Engineering, Ehime University
Matsuyama, Ehime, 790-8577 Japan
fCenter for Information Technology, Ehime University
Matsuyama, Ehime, 790-8577 Japan
j?Faculty of Computer Science and Systems Engineering, Okayama Prefectural University
Soja, Okayama, 719-1197 Japan

Abstract—Software testing is an essential activity for develop-
ing and maintaining high-quality software. Unit testing with test
code (test cases) is a fundamental testing activity, and developers
can test their production code whenever they create or modify the
code. However, such quality assurance relies on the correctness
of the test code. If a test code had a flaw, it would mislead the
developers about the hidden faults and prevent early detection of
the faults. This paper focuses on ‘“test smells,” which may cause
test code flaws in Python programs, and analyzes their changing
trends over commit history (code changes) toward better Python
test code management. Through an empirical data analysis of 100
open-source projects, the paper reports the following findings:
(1) a few kinds of test smells constitute the majority of smells
detected in the studied projects, and (2) most kinds of smells
tend to increase over commits, i.e., many test smells are likely to
have remained in test code as technical debt.

Index Terms—unit testing, test smell, technical debt, commit
history, trend analysis

I. INTRODUCTION

Unit testing is the most fundamental software testing activity
that can detect latent faults as early as possible during software
development and maintenance. The unit testing framework
(e.g., xUnit [1]) provides a helpful mechanism for automat-
ically testing software modules. Under a unit test framework,
developers prepare test code for their production code and
can quickly test their products whenever they newly create or
modify their production code [2]. Such an automated test en-
vironment can assist developers in developing and maintaining
their programs successfully.

However, the quality assurance of software modules using
an automated testing environment with unit test code depends
on the reliability of the prepared test code. A test code is also
a source code written by a human being and has a risk of
testing the production code improperly. In other words, some
test code might overlook latent faults in the production code
and mislead the developers with erroneous test results. For
example, if a test code has a conditional branch statement,
there is a risk that the test code does not test the production
code properly because the test engineer might write a flawed
condition in the branch statement. Such a risky feature is a
kind of “code smells” [3] in the test code.

Although such smells in test code may not directly cause
improper testing, they can become a technical debt for the
software product. Thus, it is ideal for detecting problematic
test code and performing refactorings to reduce the risk of
unreliable tests. Some undesirable features of test code have
been studied as “test smells” [4] in the past. Recently, Wang et
al. [5] developed a tool for detecting 18 different kinds of test
smells in Python test code and reported that a few kinds of
test smells are likely to appear in many test cases. While their
tool is helpful and their reports are noteworthy, the changing
trend of test smells has not been analyzed and discussed well.
In other words, although their reports showed which kind of
test smells are frequently detected, they missed analyzing the
trend of test smells through the development and maintenance
activities.

For example, suppose we observe a test smell that tends to
increase through code changes. It would be a kind of test smell
that developers and test engineers are likely to overlook, and
the smelled test code would survive for an extended period
as a potential risk of causing unreliable tests. We conducted
a large-scale data analysis of test smell trends in 100 open-
source Python projects to explore test smells from the time
series perspective. In this paper, we report our data analysis
and discuss the results to present fundamental data of test smell
changing trends toward adequate test code management.

II. TEST SMELLS IN PYTHON

In this section, we briefly describe the Python unit testing
framework of interest and the concept of test smells. Then we
discuss the related work and our research motivation.

A. Unit Testing Framework and Test Smells

There have been some unit testing frameworks to automat-
ically perform unit testing of Python programs and report the
testing results. We focus on unittest in this paper because it is
one of the most popular and fundamental testing frameworks
for Python. Fig. 1 presents a simple example of Python test
code based on unittest, which tests a function “fizz_buzz.”
A test case is a subclass of “unittest.TestCase,’ and
it has some test methods whose names begin with “test.”

import unittest
class TestFizzBuzz (unittest.TestCase) :

def test_fizz_buzz(self):
for value in range(1l,31):
if value in 13,6,9,12,18,21,24,27]:

expected = "Fizz"
elif value in [5,10,20,25]:
expected = "Buzz"
elif value in [15,30]:
expected = "Fizz Buzz"
else:
expected = str(value)
actual = fizz_buzz (value)

self.assertEqual (expected, actual)

Fig. 1. An example of test case having test smells.

The unit test runner executes those test methods and reports
the results. Each test method runs the production code under
test and checks if it behaves as expected using the assertion
methods provided by the framework. In the example of Fig. 1,
the “assertEqual” method checks if the actual value equals
the expected one.

Whenever developers create a new Python program or
modify an existing one, they can automatically test those new
or modified programs using the test cases under the unit testing
framework. Such an automated testing environment helps
developers detect latent faults quickly. However, it should be
noted that the successful cycle of coding and testing depends
on the test cases’ reliability. Suppose some of the prepared
test cases are incorrect and overlook some faults. In that case,
the program under test may pass all tests even if it is buggy,
and the test results would mislead the developers while giving
a false sense of reassurance. Because a unit test case is also a
program written by a human being, there is always a risk of
producing an erroneous test code [6].

Some problematic characteristics of source code to be
refactored have been studied as “code smells” [3] in the past.
Although source code with a smell does not always cause
trouble in development and maintenance, it has a higher risk
of becoming buggy or hard-to-understand code and can be a
technical debt. Because test code is also source code, a similar
concept is applicable to test code and is referred to as “test
smell” [4]. When a test code has a test smell, it is better to
refactor it to remove the smell to enhance the test’s reliability
toward the successful development of high-quality production
code.

B. Related Work and Research Motivation

Deursen et al. [4] first introduced the concept of test
smells. They focused on the difference in refactoring between
production code and test code. Through an investigation of the
test code refactoring, Deursen et al. discovered that test code
also tends to have code smells that differ from the well-known
code smells in production code, and then they presented 11
test smells and the refactorings for those smells. After that,
Meszaros et al. [1] and Greiler et al. [7] ramped up the kind
of test smells. Spandini et al. [8] reported that test smells might
adversely affect both the test and production codes, as follows:
(1) the test code with a test smell is more change-prone and
fault-prone than the other test code, and (2) the production

TABLE I
TEST SMELLS SUPPORTED BY PYNOSE

Test Smell Description

Assertion Roulette
Conditional Test Logic

Constructor
Initialization

Default Test
Duplicate Assert
Empty Test
Exception Handling
General Fixture

An AS has no explanation/message in a TC.
A control statement—if, for, while—is used.
A constructor is declared in a TS.

A TS is called MyTestCase.

Two or more ASs have the same parameters.
No executable statement appears in a TC.

A try/except or raise statement is used.

Not all fields instantiated within setUp ()
of a TS are utilized by all TCs.

A Qunittest.skip decorator is used.

The mean of cosine similarities of
all TC pairs < 0.4.

A numeric literal is used as an argument
of an AS.

A TC declares ten or more local variables.

An AS has a condition that is always true,
e.g., assertEqual (X, X).

print () is used in a TC.

time.sleep () is used with no comments.
A suboptimal assert is used in a TC.

A TC does not use any field from setUp ().
No AS is used in a TC.

Ignored Test

Lack of Cohesion of
Test Cases

Magic Number Test

Obscure In-Line Setup
Redundant Assertion

Redundant Print
Sleepy Test
Suboptimal Assert
Test Maverick
Unknown Test

(AS: assertion statement, TC: test case, TS: test suite)

code tested by a smelled test code is also more fault-prone
than the other production code. Hence, detecting test smells
and resolving their problems as early as possible is crucial for
successful software development and maintenance.

There have been studies of test smell detection and auto-
mated detection tools [9]-[12]. Recently, to support Python
programs, Wang et at. [5] developed a test smell detection tool,
PyNose, to distill 18 kinds of test smells (see Table I) from
test code automatically. Through a case study examining open-
source projects, they empirically showed PyNose successfully
detects test smells and reported some test smells, such as
“Assertion Roulette,” “Conditional Test Logic,” and ‘“Magic
Number Test,” tend to appear in many Python test code. For
instance, the test case shown in Fig. 1 has a smell categorized
as “Conditional Test Logic” because it contains conditional
branches. Although its risk of making mistakes is low be-
cause of the code simpleness, it would be better to describe
assertion methods corresponding to straightforward test cases
suchas (3, "Fizz"), (4, "4") and (5, "Buzz"), for
making the test case more readable and inerrable.

Although previous studies on test smells have presented
valuable suggestions and practical tools, their main focuses
were on detecting and refactoring test smells, and “the changes
in test smell trends” have not been well-analyzed to the best
of our knowledge. For example, suppose the number of test
cases with a specific test smell tends to increase in a software
development project through its code changes (commits on the
repository). Such a test smell may keep staying and growing
in the test code as a technical debt for the project without
the developers being aware of it. Hence, we consider the
changes in test smell trends are also worthwhile to analyze for
successful technical debt management, and this is our research
motivation in this paper.

III. DATA ANALYSIS

As mentioned in Section II, previous studies on test smells
have mainly focused on detecting and refactoring the test
smells but have not analyzed the changes in smell trends well.
Thus, we conducted a large-scale investigation of test smells in
100 Python open-source projects and quantitatively analyzed
their trends over commit histories. We report our investigation
and the analysis results in this section.

A. Aim

We tackle the following two research questions (RQs).

e RQI1: What test smells will likely appear in Python test
code? Do the trends differ among projects?

e RQ2: How does each test smell’s trend change over
commits? Do the trends differ among projects?

RQ1 is a fundamental question regarding test smells. To
answer RQ1, we collect test smell data from various open-
source projects. The investigation results would present basic
data for discussing effective preventive measures against qual-
ity deterioration caused by test smells. RQ2 is a further and our
primary question by introducing a time perspective: although
RQ1 focuses on test smells detected in a snapshot of test code,
RQ2 considers their changes over time (commit histories). As
mentioned above, we will analyze the changes in test smell
trends toward successful technical debt management.

B. Studied Projects and Data Analysis Procedure

We collected test smell data from 100 Python open-source
projects', satisfying the following six conditions to examine
active projects [13]: (i) Their “stars” scores are higher than 50;
(i1) They have modified not only production code but test code
through commits; (iii) Their repositories have more than 1000
commits; (iv) They have more than ten contributors; (v) Their
developments have lasted more than two years; (vi) They have
had one or more commits within the last twelve months.

We performed the following steps for each project to collect
and analyze test smell data.

(1) Make a list of commits. Clone the Git repository and list
all commits by checking the commit logs.

(2) Detect test smells. Check out each commit from the
repository and run PyNose to detect test smells in that version
of the test programs.

(3) Analyze the collected data for answering RQ1. Count
the detected test smells by smell type (see Table I) in the latest
version and compare their appearance patterns among projects.
(4) Analyze the collected data for answering RQ2. Count
the detected test smells by smell type in each version (commit)
and make their moving averages (window size = 50 commits)
to capture their change trends. Then compute the correlation
coefficient (Spearman’s p) between the appearance counts
and commit times for each smell type to understand its in-
creasing/decreasing trend. Moreover, compare the correlation
coefficients among projects.

IThe project list is available from our supplemental data site,
https://se.cite.ehime-u.ac.jp/data/Fushihara_SEAA2023/ .

TABLE II
RELATIVE FREQUENCIES OF TEST SMELLS IN ALL PROJECTS

Rank Test Smell Relative Frequency
1 Assertion Roulette 23.6%
2 Conditional Test Logic 13.0%
3 Magic Number Test 11.7%
4 General Fixture 10.1%
5 Unknown Test 8.6%
6 Duplicate Assertion 7.4%
7 Test Maverick 5.0%
8 Exception Handling 5.0%
9 Lack Cohesion 4.9%
10 Suboptimal Assert 4.7%
11 Obscure In Line Setup 1.9%
12 Redundant Print 1.7%
13 Ignored Test 0.9%
14 Sleepy Test 0.8%
15 Redundant Assertion 0.4%
16 Empty Test 0.2%
17 Constructor Initialization 0.1%
18 Default Test 0.0%

Test smell counts may fluctuate after adding new test code
because some test engineers notice and refactor test smells.
We adopted the moving average method because we aim
to obverse the rough increasing/decreasing trends in commit
histories. We empirically set the window size to 50 to filter
out short-term fluctuations.

C. Results and Discussions on RQI

We begin with reporting the results regarding RQ1. Table II
presents the relative frequencies of test smell appearance
counts in all the latest test programs of all studied projects. The
table shows that “Assertion Roulette” is the most frequently
appearing smell, and “Default Test” did not appear at all. The
distribution of test smells shown in Table II is close to the
results reported in the previous study [5]. The Spearman’s
p between our result and the previous one is 0.98, and
we consider that we could replicate the empirical results
successfully.

Next, we compared the test smell distributions among
projects: For each project, we regarded the project’s relative
frequencies of test smells as the 18-dimensional vector and
computed their cosine similarities. Fig. 2 shows the histogram
of cosine similarities; the median and mean values were
0.8990 and 0.8287. Hence, we can say that the test smell
distributions are similar among most projects. We also ex-
amined six projects with the lowest similarities, i.e., those
with different smell distributions. As a result, five out of six

20

#projects
15

10

r T T T T 1
0.0 02 0.4 0.6 08 1.0

Cos similarity

Fig. 2. Histogram of cosine similarities among projects.

TABLE III
PERCENTAGES OF PROJECTS CORRESPONDING TO TRENDS OF TEST SMELL CHANGES THROUGH COMMITS

Test Smell p<—06 —-06<p<—-02 —-02<p<02 02<p<06 p>06 NA
Assertion Roulette 9.2% 10.5% 6.6% 7.9% 57.9% 7.9%
Conditional Test Logic 7.9% 10.5% 6.6% 10.5% 56.6% 7.9%
Magic Number Test 7.9% 7.9% 7.9% 13.2% 46.1% 17.1%
General Fixture 3.9% 15.8% 5.3% 9.2% 474% 18.4%
Unknown Test 7.9% 7.9% 13.2% 14.5% 44.7% 11.8%
Duplicate Assertion 5.3% 10.5% 5.3% 5.3% 55.3% 18.4%
Test Maverick 6.6% 13.2% 5.3% 7.9% 434% 23.77%
Exception Handling 7.9% 7.9% 11.8% 11.8% 382% 22.4%
Lack Cohesion 2.6% 17.1% 10.5% 13.2% 395% 17.1%
Suboptimal Assert 5.3% 10.5% 6.6% 7.9% 434% 263%
Obscure In Line Setup 3.9% 7.9% 11.8% 10.5% 224% 43.4%
Redundant Print 0.0% 2.6% 11.8% 14.5% 224% 48.7%
Ignored Test 3.9% 2.6% 6.6% 3.9% 15.8% 67.1%
Sleepy Test 2.6% 5.3% 10.5% 10.5% 158% 55.3%
Redundant Assertion 2.6% 6.6% 13.2% 5.3% 145% 57.9%
Empty Test 5.3% 3.9% 21.1% 3.9% 11.8% 53.9%
Constructor Initialization 1.3% 5.3% 1.3% 3.9% 2.6% 85.5%
Default Test 0.0% 0.0% 1.3% 0.0% 0.0% 98.7%
Average 4.7% 8.1% 8.7% 8.6% 321% 37.9%

(NA: the projects have no test smell corresponding to the row.)

projects (workload-automation, scvi-tools, pudb, rosdistro, and
magic-wormhole) had fewer test smells, which may be the rea-
son why they showed dissimilar distributions. The remaining
project—remi—had a project-specific trend: “General Fixture”
appeared three times as many as “Assertion Roulette.” No
other projects showed such a project-specific difference.
From the above results, we answer RQ1 as follows. The
most frequently appearing (top 3) test smells in Python would
be “Assertion Roulette,” “Conditional Test Logic,” and “Magic
Number Test,” and they share about half of all test smells.
The trend of test smell seems to be common to most projects.
Because these smells are related to how to write assertions or
issues on test code readability, it is efficient to consider the
preventive measures for them to control technical debt.

D. Results and Discussions on RQ2

We focused on the changes in test smell appearances over
commits and collected the trend data (moving averages) from
the studied projects. Fig. 3 presents the changing trends of
“Assertion Roulette” in pyinfra and ibis projects. While we
can see a monotonically increasing trend of the test smell over
commits in pyinfra project (see Fig. 3(a)), we also observe an
opposite trend in ibis project (see Fig. 3(b)). We obtained those

Number of detected test smells

Number of detected test smells

500 1000 1500 2000 2500 3000 3500
Number of commits

(b) ibis

0 500 1000 1500 2000 2500 3000 3500]
Number of commits

(a) pyinfra

Fig. 3. Change trends of number of detected test smells corresponding to
“Assertion Roulette” in pyinfra and ibis projects.

trend data for all combinations of the available test smells
and the studied projects. Then we computed Spearman’s p to
capture their increasing/decreasing trends quantitatively. For
instance, we obtained p = 0.995 and p = —0.899 for the
trend data of “Assertion Roulette” in pyinfra and ibis projects
(Fig. 3(a) and (b)), respectively; these correlation coefficients
indicate a strong increasing trend and a strong decreasing
one. Table III presents the results of all test smells. In the
table, the highest percentage within a test smell (a row) is
emphasized by boldface. For example, “Assertion Roulette”
had a strong increasing trend (p > 0.6) in 57.8% of projects>.
On the other hand, there are also projects having decreasing
trends of test smells (p < —0.2), although they are a minority
(4.7 + 8.1 = 12.8%). We can see that the highest percentage
categories of projects are “p > 0.6, i.e., increasing trends
for the most appearing ten kinds of test smells—Assertion
Roulette, Conditional Test Logic, ..., Suboptimal Assert—in
Table III. Although the remaining eight kinds of test smells
tend not to appear in projects, six out of eight showed that
“p > 0.6” are the highest percentage categories within the
projects where those smells appeared. Hence, we can say most
test smells tend to increase over commits. It would be adequate
to detect and refactor those frequently appearing test smells
as early as possible to avoid the risk of performing unreliable
tests.

Interestingly, 7.9-9.2% of projects also had decreasing
trends (p < 0.6) for the most appearing three kinds of
test smells—Assertion Roulette, Conditional Test Logic, and
Magic Number Test. Although those projects are the minority,
some developers or test engineers of the projects might pay
attention to test smells. On average, while 40.7% (= 8.6% +
32.1%) of projects showed increasing trends of test smells,

2Since no test smell was detected by PyNose throughout the commits in
24 out of 100 projects, the presented values are the percentages in the 76
projects where at least one test smell had appeared.

12.8% of projects had decreasing trends, so that the test smell
changing trend may differ among projects.

From the above results, we answer RQ2 as follows. Test
smells tend to increase through commits in Python projects.
The potential risks caused by test smells would grow without
preventive measures, and it is vital to detect and resolve test
smells as early as possible. Although those trends may differ
among projects, the most frequently appearing ten kinds of
test smells have increasing trends in 39.5-57.9% of the studied
projects.

Notice that the above analysis has focused on the number
of detected test smells but not their ratios to the number of
test cases or the lines of test code. In this study, we have paid
attention to the existence of test smells because their presence
can cause a risk of unreliable tests. On the other hand, it would
also be worthwhile to analyze “the rate” of each kind of test
smells in a project, like a bug (fault) rate discussed in the fault-
prone module analysis studies, because the test code would
also evolve with the production code through commits. We
plan to do a further analysis focusing on the test smell rate
to obtain a deeper insight into the test smell trends as our
significant future work.

E. Threats to Validity

We empirically set the window size of the moving average
to 50 in our data analysis. Since a different window size can
present a different trend data of test smell, the window size
selection can threaten our construct validity. Although we have
used the window size to filter out short-term fluctuations, it
would be better to utilize an advanced time series analysis
method for mitigating the threat, and we also plan to perform
it in our future work.

Another threat to our construct validity is the test smell
detection tool we used in this study because we have used only
the PyNose to detect smells. There might be a tool-specific
potential bias in the test smell detection. For example, there
might be a kind of test smells that PyNose is likely to miss,
but another tool can detect it. We also need to use other state-
of-the-art tools [14] to mitigate the threat for further smell
data analysis.

Our data analysis results are derived from only Python open-
source projects, which can threaten the external validity of
this study. Although we can expect that similar trends of test
smells may be observed in other language projects because the
concept of unit testing is common to other languages, we need
to conduct further data collection and analysis to generalize
our results to test programs in other languages.

IV. CONCLUSION AND FUTURE WORK

We have focused on “test smells,” i.e., code smells in test
code, which may adversely affect both production and test
code. Although the previous studies presented valuable test
smell detection and refactoring methods, they missed analysis
of their changing trends through commits. In this paper, we
investigated 100 open-source Python projects and analyzed
trend data of test smells. As a result, we obtained the following

findings: (1) a few kinds of test smells—Assertion Roulette,
Conditional Test Logic, and Magic Number Test—constitute
the majority of smells detected in the studied projects, and (2)
most kinds of smells tend to increase over commits, i.e., many
test smells are likely to have remained in test code as technical
debt. Since developers and test engineers may overlook those
kinds of test smells, detecting and refactoring them as early
as possible is helpful for successful test code management.
In particular, detecting the above frequently appearing smells
and giving a warning to test engineers would be an efficient
preventive measure against test-related technical debt.

Our future work includes (i) detailed analyses of what
causes the test smell growth and of how the test smell growth
affects the quality of production code; (ii) an analysis of
human aspects of the test smells, e.g., on the question “Is a
test smell specific to a particular test engineer?”; (iii) further
data analysis using another state-of-the-art detection tool [14]
that can detect other kinds of test smells, such as the “Rotten
Green Test.”

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI #20H04184,
#21K11831, #21K11833, and #23K11382.

REFERENCES

[1] G. Meszaros, xUnit Test Patterns: Refactoring Test Code. Boston, MA:
Addison-Wesley Professional, 2007.

[2] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production &
test code,” in Proc. Ist Int. Conf. Softw. Testing, V. & V., Apr. 2008, pp.
220-229.

[3] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[4] A. V. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring
test code,” in Proc. 2nd Int. Conf. Extreme Programming & Flexible
Processes in Softw. Eng., May 2001, pp. 92-95.

[5] T. Wang, Y. Golubev, O. Smirnov, J. Li, T. Bryksin, and I. Ahmed,
“Pynose: A test smell detector for python,” in Proc. 36th Int. Conf.
Automated Softw. Eng., Nov. 2021, pp. 593-605.

[6] C. Jones, Applied Software Measurement: Global Analysis of Produc-
tivity and Quality, 3rd ed. New York: McGraw-Hill, 2008.

[71 M. Greiler, A. Van Deursen, and M.-A. Storey, “Automated detection of
test fixture strategies and smells,” in Proc. 6th Int. Conf. Softw. Testing,
V. & V., Mar. 2013, pp. 322-331.

[8] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in Proc. Int.
Conf. Softw. Maintenance & Evolution, Sep. 2018, pp. 1-12.

[9] A.Peruma, K. S. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and

F. Palomba, “On the distribution of test smells in open source android

applications: An exploratory study,” in Proc. 29th Int. Conf. Comp. Sc.

& Softw. Eng., Nov. 2019, pp. 193-202.

A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,

and F. Palomba, “tsDetect: an open source test smells detection tool,”

in Proc. 28th Joint European Softw. Eng. Conf. & Symp. Foundations

Softw. Eng., Nov. 2020, pp. 1650-1654.

S. Lambiase, A. Cupito, F. Pecorelli, A. De Lucia, and F. Palomba,

“Just-in-time test smell detection and refactoring: The darts project,” in

Proc. 28th Int. Conf. Program Comprehension, May 2020, pp. 441-445.

T. Virginio, L. Martins, L. Rocha, R. Santana, A. Cruz, H. Costa, and

1. Machado, “Jnose: Java test smell detector,” in Proc. 34th Brazilian

Symp. Softw. Eng., Oct. 2020, pp. 564-569.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,

and D. Damian, “The promises and perils of mining github,” in Proc.

11th Working Conf. Mining Softw. Repositories, May 2014, pp. 92-101.

F. Maier and M. Felderer, “Detection of test smells with basic language

analysis methods and its evaluation,” in Proc. IEEE Int. Conf. Softw.

Analysis, Evolution & Reeng., Mar. 2023, pp. 897-904.

[10]

(11]

[12]

[13]

[14]

