
Fault-Proneness of Python Programs
Tested By Smelled Test Code

Yuki Fushihara
Graduate School of Sc. & Eng.

Ehime University
Matsuyama, Japan

Hirohisa Aman
Center for Information Technology

Ehime University
Matsuyama, Japan

aman@ehime-u.ac.jp

Sousuke Amasaki
Faculty of Comp. Sc. & Systems Eng.

Okayama Prefectural University
Soja, Japan

amasaki@cse.oka-pu.ac.jp

Tomoyuki Yokogawa
Faculty of Comp. Sc. & Systems Eng.

Okayama Prefectural University
Soja, Japan

t-yokoga@cse.oka-pu.ac.jp

Minoru Kawahara
Center for Information Technology

Ehime University
Matsuyama, Japan

kawahara@ehime-u.ac.jp

Abstract—Software testing is one of the most crucial quality
assurance activities, and test results are of great concern to
software developers. However, the quality assurance of the test
code (test case) itself also becomes critical because a poor-quality
test case may fail to detect latent faults and give developers
false comfort regarding the test result. A code smell threatening
test code quality has been studied as “test smell.” This paper
conducts an investigation of test smells in 775 Python open-
source programs and reports the results of a quantitative analysis
regarding whether test smells impact the fault-proneness of the
product code under test. The analysis results show the following
two findings. (1) When a test code has one of the reported ten
kinds of test smells, the production code under test is more fault-
prone than the others. (2) The fault-proneness of a production
code tends to get higher when the corresponding test code has
two or more different kinds of test smells—over 75% of test
smell combinations showed such a trend of increasing the risk
of being faulty production code.

Index Terms—unit testing, quality of test code, test smell, fault-
proneness

I. INTRODUCTION

Unit testing is a fundamental quality assurance activity for
testing software modules. Because developers can perform unit
testing as soon as they develop a new module or modify an ex-
isting one, it would contribute to detecting latent faults as early
as possible during their coding and maintenance activities [1],
[2]. To this end, developers often prepare test programs under
a unit testing framework, e.g., xUnit [3], as their unit test
cases. A unit testing framework provides an automated testing
environment in which we can automatically run all test cases
and obtain their testing results. Hence, by using various test
cases under a unit testing framework, developers can develop
and maintain their programs (production code) while testing
them continuously. It is an effective software development
method known as test-driven development [4].

However, it’s crucial to recognize that test programs (test
code) are also human-written source programs. This means
that the test program itself carries a risk of being faulty and

may improperly test its target production code. Test results
from defective test programs are unreliable, as they may fail to
detect latent faults in the production code. These unreliable test
results can give developers a false sense of security, potentially
leading to the release of a faulty product. Although the quality
of the test code itself is likely to go unnoticed, it is also a
noteworthy point of view for successful software development.

In code refactoring studies, the signs of potential problems
we may refactor to improve code quality are called “code
smells [5].” Code smells may also appear in test code and
have been studied as “test smells [6]” in the past. For example,
as Python has been becoming one of the most popular pro-
gramming languages, Wang et al. recently proposed test smells
in Python unit testing code and developed the detection tool,
PyNose [7]. Although there are previous studies regarding test
smells, their primary focus is on detecting smells [3], [8]–[11],
[11], [12]. To the best of the authors’ knowledge, there have
been a few empirical studies of the relationship between the
test smells and the production code quality in the past: Spadini
et al. [13] analyzed Java production code’s fault-proneness
(defect-proneness) using six test smells. Therefore, we focus
on test smells in another popular programming language,
Python, and report a large-scale investigation of production
code’s fault-proneness using more kinds of test smells, i.e.,
18 test smells detectable by PyNose, in this paper.

The remainder of this paper is organized as follows. Sec-
tion II describes test smells in Python. Then, Section III reports
our investigation and discusses the results. Finally, Section IV
presents the conclusion of this paper and our future work.

II. TEST SMELLS IN PYTHON

We briefly describe the previous work on test smells. Then,
we present the Python test smells of interest in this study.

A unit testing framework offers an automated testing envi-
ronment in which developers can test their production code
whenever they add new code or modify an existing one. Such

an environment is helpful for effective quality assurance of
production code under development. However, if the test case
(test code) is defective, the test results are unreliable and
deliver a false sense of security to the developers. Because
the test code is also a program written by human developers,
there is always a risk that test code threatens the reliability of
test results.

Deursen et al. [6] introduced the notion of “test smells”
and proposed eleven different smells and methods for refac-
toring them. Meszaros [3] and Greiler et al. [8] enriched
the test smell studies by proposing other kinds of smells.
Then, researchers developed test smell detection tools for some
programming languages and their unit testing frameworks [9]–
[12]. Although the basic concept of test smells is common to
any programming language, there is variation in test smells
among languages because different programming languages
may have different characteristics. In other words, while a
certain kind of test smell often appears in a programming
language, the smell might not or cannot appear in another
language. For example, we sometimes see a test smell called
“Resource Optimism” [6] in Java test code, corresponding to
the case that the test program uses a File object without
checking its existence. Even if the file of interest did not exist,
we could obtain an instance of File class, which might cause
a defect in the test code. On the other hand, in Python, it is
standard to open a file and associate it with a variable1 before
using the variable linked to the file resource. Hence, “Resource
Optimism” may not become a noteworthy smell in Python [7].

From the perspective of language-specific characteristics
related to test smells, Wang et al. [7] carefully selected 17
kinds of test smells from the conventional ones and added a
new smell “Suboptimal Assert” for Python. Table I presents
those 18 test smells. Furthermore, Wang et al. developed a
test smell detection tool, PyNose. PyNose can detect those
test smells from a test code under Python’s unittest unit
testing framework.

Because test smells may threaten the reliability of test
code and increase the risk of overlooking latent faults, the
fault-proneness of the production code tested by smelled test
code might be higher than that of other production code.
If we show such an increasing trend of fault-proneness and
what kind of test smells are noteworthy, it will help drive
successful software quality management from the perspective
of test smells. Indeed, Spadini et al. [13] reported an empirical
study showing the relationships between faulty Java production
code and test smells. However, to the best of our knowledge,
an empirical study regarding the fault-proneness of Python
production code tested by smelled code has not been reported
in the literature. Thus, we will utilize PyNose to detect test
smells in Python test code and analyze the fault-proneness of
production code under test in this paper.

III. QUANTITATIVE INVESTIGATION

We collected Python programs from 50 open-source soft-
ware projects and conducted a quantitative investigation re-

1https://docs.python.org/3/library/filesys.html

TABLE I
TEST SMELLS SUPPORTED BY PYNOSE

No. Test Smell
S1 Assertion Roulette

Two or more assertion statements in a test case have no
message for their failures [6].

S2 Conditional Test Logic
A conditional statement appears in a test case [10].

S3 Constructor Initialization
A test case is initialized without calling setUp() [7], [10].

S4 Default Test
The test suite’s name is MyTestCase (the default one) [7], [10].

S5 Duplicate Assert
Two or more identical assertions appear in a test case [10].

S6 Empty Test
No executable statement appears in a test case [10].

S7 Exception Handling
An exception handling does not use assertRaises() [7], [10].

S8 General Fixture
Not all fields instantiated within setUp() are used by
all test cases [7], [10].

S9 Ignored Test
A test case is ignored by @unittest.skip [7], [10].

S10 Lack of Cohesion of Test Cases
The mean cosine similarity of all test case pairs ≤ 0.4 [7], [8].

S11 Magic Number Test
A magic number (numerical literal) appears in a test case [10].

S12 Obscure In-Line Setup
A test case has ten or more local variables [8].

S13 Redundant Assertion
A test case has an assertion whose condition is always true [10].

S14 Redundant Print
A test case calls print() [7], [10].

S15 Sleepy Test
A test case calls time.sleep() [7], [10].

S16 Suboptimal Assert
An assertion statement could be replaced with another one that
is more suitable for testing [7], e.g., assertTrue() is more
suitable for testing a Boolean value than assertEqual().

S17 Test Maverick
A test case does not use a class field from setUp() [7], [8].

S18 Unknown Test
No assertion statement appears in a test case [9].

garding the fault-proneness of production code tested by
smelled test code. In this section, we report the results of our
investigation and data analysis.

A. Research Questions

We analyzed the collected data under the following two
research questions (RQs):
RQ1: Does a test smell in the test code affect the fault-
proneness of the production code under test?

RQ1 is our fundamental question regarding the impact of
test smells on the production code’s quality. We examine
whether the production code tested by smelled test code is
more fault-prone. Moreover, we focus on the fault-proneness
with respect to each smell to see the difference in their
impacts. Although we can consider 18 kinds of test smells,
their impacts would vary from smell to smell. We aim to reveal
the importance level of each test smell to be alerted.

faulty

faulty

non-faulty

non-faulty

#12345

#12467

#12678

#12789

tagissue ID
……

bug#12345
bug#12467
……

enhancement#12678
enhancement#12789

……

issue tracking site

code commits
(change history)

Fig. 1. Decision of “faulty” and “non-faulty” production code.

RQ2: How do combinations of test smells affect the fault-
proneness of the production code?

RQ2 is a further question in which we expanded our focus
to the co-occurrence of test smells rather than a single smell.
Because we often see some different test smells simultaneously
occur in a test case, we will examine if such a combination
of smells increases the risk of being an unreliable test or not.

B. Dataset

We collected data on production and test code from 50
Python open-source software projects according to the pre-
vious study by Wang et al. [7]. We describe how we prepared
our dataset in this subsection.

We collected 50 repositories of Python open-source projects
available at GitHub (see our supplementary site2 for the project
list), satisfying the following conditions:

1) Their “stars” scores are higher than 50.
2) They have modified not only production code but test

code through commits.
3) Their repositories have more than 1,000 commits.
4) They have more than ten contributors.
5) Their developments have lasted more than two years.
6) They have had one or more commits within the last

twelve months.
We set the above criteria to pick up actively maintained
projects based on the work by Kalliamvakou et al. [14] and
our experience.

For each project, we made a local copy of the repository
(cloned the repository). Then, we traced each production
code’s (source file’s) change history and checked whether
it had experienced a “bugfix” commit. If a source file was
changed through a bugfix commit, we consider the previous
revision (just before the bugfix) of the source file to be “faulty”

2https://se.cite.ehime-u.ac.jp/data/Fushihara_SEAA2024/

production code (see Fig. 1). On the other hand, if a source
file has not experienced any bugfix commit, we regarded its
latest revision as a “non-faulty” one.

To decide whether a commit is a bugfix one, we focused on
the issue ID described in the commit message. We considered
the aim of a commit to be a bugfix if the corresponding issue
ID was found at its issue management site and had a fault-
related tag such as “bug,” “defect,” and “fault.”

After extracting faulty or non-faulty production code, we
checked if there is a test code that test the production code.
Then, we examined each test code using PyNose and detected
test smells. Notice that we had to focus only on the test code
that was written under unittest unit testing framework to
analyze its test smells by PyNose. In other words, we had to
exclude the test code if they were written under another testing
framework because we cannot evaluate their test smells in this
study.

As a result, we obtained a dataset consisting of data items
of 775 production code (source files) tested by one or more
test cases under unittest unit testing framework. Each data
item gives information about whether the production code was
faulty and which kinds of test smells occurred in the test code
testing the production one. Our dataset is available from our
supplementary site.

C. Procedure

We describe our experimental prodedure to answer RQ1 and
RQ2 below.

1) RQ1: To answer RQ1, we estimate the probability that
a production code is faulty, P (Faulty), and the conditional
probability that a production code is faulty when it was tested
by a test code with test smell Si, P (Faulty |Si), respectively
(for i = 1, . . . , 18), from our collected data. Because our
dataset is a sample set of Python programs, we utilize the

Bayesian inference method [15] with the Jeffreys prior distri-
bution [16] to obtain those probabilities rather than adopting
the simple rates of faulty production code. We briefly describe
the Bayesian inference method below.

Suppose we have a sample set consisting of n production
code (source files) tested by test code having smell Si, and
a out of n production ones are faulty, and the remaining
n − a ones are non-faulty. Let x be the probability that a
production program is faulty, and y be the fact that the above
sample set is given. Bayesian statistics call p(x|y) the posterior
distribution and consider it a probability distribution rather
than a single probability value. According to Bayes’ theorem,
the posterior distribution is proportional to the product of the
prior distribution p(x) and the likelihood p(y|x):

p(x|y) ∝ p(x) p(y|x) .

Because x corresponds to the binary data—faulty or non-
faulty—in the context of our study, the likelihood p(y|x)
follows the binomial distribution:

p(y|x) ∝ xa(1− x)n−a .

To estimate the posterior distribution from the sample set,
we need to decide the prior distribution p(x). Because we
have no special prior information regarding the distribution
of the production code’s fault-proneness, we adopted a non-
informative prior distribution, and the following Jeffreys prior
distribution f(x) is a well-known one for binomial distribution
context:

f(x) ∝ x−0.5(1− x)−0.5 .

Hence, we obtain the following expression regarding the
posterior distribution:

p(x|y) ∝ x−0.5(1− x)−0.5 xa(1− x)n−a

= xa−0.5(1− x)n−a−0.5 .

Because a distribution whose probability density is propor-
tional to xs−1(1−x)t−1 is a Beta distribution, Beta(s, t), we
can express the posterior distribution as follows:

p(x|y) ∝ Beta(a+ 0.5, n− a+ 0.5) .

Although the above expression is not equality (“=”) but
proportionality (“∝”), we can compute the concrete probability
values by scaling the values so as to hold

∫ 1

0
p(x|y)dx = 1.

Fig. 2 shows an example of estimated posterior distribution
under n = 536 and a = 93. The gray region in the figure
corresponds to the 95% Bayesian credible interval whose
lower and upper limits are 2.5% and 97.5% points of the
distribution function. We use the 50% point (median) of the
distribution function as an estimated probability in this study.

2) RQ2: To answer RQ2, we focus on the available com-
binations of two test smells and estimate the probability that a
production code is faulty when it was tested by a test code in
which two test smells Si and Sj co-occur, P (Faulty |Si ∧Sj)
(for i, j = 1, . . . , 18; i < j). Similar to answering RQ1,
we estimate those probabilities using the Bayesian inference
method.

0

5

10

15

20

25

0.1 0.2 0.3
x

d
en
si
ty

Fig. 2. An example of estimated posterior distribution.

D. Results

We show our results according to the RQs below.
1) RQ1: For each test smell Si, we estimated P̂ (Faulty |Si)

to see the impact of Si on the fault-proneness of the production
code under test (for i = 1, . . . , 18). Table II presents the
estimated probabilities and their 95% credible intervals (95%
CI). In the table, we emphasize the higher probabilities than
the estimated probability that a production code is faulty
(without any test smell condition), P̂ (Faulty), by boldface.
Because “S4: Default Test” did not appear in our dataset, we
omit the data regarding S4 below.

The highest probability of being faulty was P̂ (Faulty |S3),
i.e., the cases that the production code was tested by a test
code having “S3: Constructor Initialization” (see Table II). The
estimated probability is about two times higher than the overall
probability (without any test smell condition), and its 95% CI
was significantly higher. As a result, 10 out of 18 test smells
showed higher estimated probabilities of being faulty than the
overall one. Interestingly, the more frequently appearing test

TABLE II
ESTIMATED PROBABILITY OF BEING FAULTY WHEN TESTED BY A

SMELLED TEST CODE

Test Smell P̂ (Faulty |Si) 95% CI
S1: Assertion Roulette 0.174 [0.143, 0.207]
S2: Conditional Test Logic 0.173 [0.138, 0.211]
S3: Constructor Initialization 0.419 [0.180, 0.688]
S4: Default Test — —
S5: Duplicate Assert 0.153 [0.114, 0.198]
S6: Empty Test 0.125 [0.048, 0.247]
S7: Exception Handling 0.155 [0.108, 0.211]
S8: General Fixture 0.165 [0.128, 0.208]
S9: Ignored Test 0.141 [0.076, 0.228]
S10: Lack of Cohesion of Test Cases 0.144 [0.097, 0.200]
S11: Magic Number Test 0.190 [0.150, 0.234]
S12: Obscure In-Line Setup 0.134 [0.082, 0.200]
S13: Redundant Assertion 0.068 [0.006, 0.244]
S14: Redundant Print 0.182 [0.124, 0.252]
S15: Sleepy Test 0.171 [0.059, 0.349]
S16: Suboptimal Assert 0.216 [0.165, 0.273]
S17 Test Maverick 0.168 [0.125, 0.219]
S18: Unknown Test 0.124 [0.091, 0.164]
Overall probability P̂ (Faulty) 0.147 [0.123, 0.173]

TABLE III
ESTIMATED PROBABILITIES THAT THE PRODUCTION CODE IS FAULTY

WHEN IT WAS TESTED BY TEST CODE HAVING TWO SMELLS

No. Combination P̂ (Faulty |Si ∧ Sj) 95% CI
1 S3 ∧ S5 0.948 [0.555, 1.000]
2 S3 ∧ S6 0.933 [0.464, 1.000]
3 S3 ∧ S9 0.933 [0.464, 1.000]
4 S3 ∧ S10 0.933 [0.464, 1.000]
5 S3 ∧ S12 0.933 [0.464, 1.000]
...

...
...

...
101 S2 ∧ S7 0.148 [0.101, 0.205]
102 S1 ∧ S18 0.146 [0.104, 0.196]

...
...

...
...

130 S2 ∧ S13 0.072 [0.007, 0.257]
131 S5 ∧ S13 0.072 [0.007, 0.257]
132 S7 ∧ S13 0.072 [0.007, 0.257]
133 S12 ∧ S13 0.027 [0.000, 0.262]
134 S13 ∧ S14 0.018 [0.000, 0.185]

smells are not always associated with a higher probability of
being faulty. For example, although S1 occurs most frequently
in the test code [7], the probability of being faulty when it
appears in the test code ranked 5th within 18 smells.

2) RQ2: Although it is ideal to consider all combinations of
18 different test smells, the number of combinations becomes
too many to examine. Thus, we considered combinations of
two smells Si and Sj (co-occurrences of them) in a test code
and estimated the probabilities that the production code is
faulty when the corresponding test code has those smells:
P̂ (Faulty |Si ∧ Sj) (for i, j = 1, . . . , 18; i < j). As a result,
we could calculate the probabilities for 134 combinations, and
Table III presents some of them in descending order. All results
are available on our supplementary site.

Since the estimated probability of being faulty without any
test smell condition is 0.147 (see Table II), we observed that
101 out of 134 combinations (75.4%) of test smells tend to
be related to higher fault-proneness of production code when
those test smells co-occur in the test code.

E. Discussions

We collected and analyzed data on Python test smell under
two RQs. We discuss the results regarding the RQs below.

1) RQ1: As shown in Table II, the estimated probability
that the production code is faulty when the smelled test code
tests is higher than the overall estimated probability (0.147)
for 10 out of 18 test smells. “S3: Constructor Initializa-
tion” and “S16: Suboptimal Assert” showed trends that they
are significantly high; While the 95% credible interval of
the overall probability of being faulty P̂ (Faulty) is [0.123,
0.173], those of the conditional probabilities P̂ (Faulty |S3)
and P̂ (Faulty |S16) are [0.180, 0.688] and [0.165, 0.273].

“S3: Constructor Initialization” is the test smell that the test
code’s way of initializing is anti-recommendation and would
result in overlooking latent faults. Although it is hard to firmly
conclude that such an anti-recommended way of initializing
always contributes to raising the risk of being faulty, the smell

only sometimes occurs in the test code (only 12 out of 775
samples), and those test cases had disparate characteristics. On
the other hand, “S16: Suboptimal Assert” relatively frequently
occurs in the test code (223 out of 775 samples). That smell is
a warning of improper usage of assertion methods and might
be related to inappropriate test cases.

We answer RQ1 (Does a test smell in the test code affect
the fault-proneness of the production code under test?) as:

We revealed that 10 out of 18 test smells detectable by
PyNose would have risks of increasing the fault-proneness
of the production code under test. Especially, “S3: Construc-
tor Initialization” and “S16: Suboptimal Assert” would be
worth detecting and alerting the test engineers to refactor
them to prevent overlooking latent faults through the test.

2) RQ2: By focusing on the co-occurrence of test smells,
we observed that 101 out of 134 combinations would increase
the fault-proneness of the production code under test (see
Table III). Although individual test smells may adversely
affect the quality of test code (e.g., readability), their co-
occurrences might have negative synergies on the testing. For
example, although the test smell S3 itself showed a high
impact on the fault-proneness of the production code under
test (see Table II), the combinations of S3 with another test
smell showed still higher impacts on the fault-proneness (see
Table III). Although it is hard to make a strong conclusion
regarding those combinations’ harmfulness due to the limited
number of samples, we can say that the production code tested
by test code having two different test smells is more fault-
prone. Thus, those test smells may affect testing quality.

We answer RQ2 (How do combinations of test smells
affect the fault-proneness of the production code?) as:

When different test smells co-occur in the test code, the
production code under test is likely to be more fault-prone.
Test smells may have negative synergies, and it is better to
preferentially review and refactor those test programs toward
more reliable and successful testing activity.

F. Threats to Validity

We describe our threats to the validity of this study below.
1) Internal Validity: We have quantitatively shown that

some test smells are likely to affect the fault-proneness of the
production code tested by the smelled test code in this study.
However, we did not investigate how those test smells related
to the overlooked faults, and this is a threat to internal validity.
Although we discussed trends of test smells that might impact
the production code’s faults, we need to conduct a further and
deeper analysis of their impacts as our important future work.

Furthermore, we did not examine the co-occurrence and
interaction between test smells in this study. It can also
threaten the internal validity of the study. Some test smells
may occur together with other specific smells or some smells
may be hard to co-occur with specific ones. Understanding the
relationships between test smells is better for building a useful
test smell-based warning system. We plan to conduct a data

analysis regarding the relationships and study a reasonable way
of considering their effects in the future.

2) Construct Validity: Although there are several test smell
detection tools (e.g., [17]), we have used only PyNose in this
study. Hence, the tool may cause a bias regarding smell detec-
tion, which threatens the construct validity. Because PyNose
works only for the test code under Python’s unittest
unit testing framework, we had to exclude the test code that
adopted another testing framework from our experimental
subjects. A comparative study with other smell detection tools
is our significant future work.

Another threat to the construct validity is our way of
marking “faulty” programs. In this study, when a program is
changed at a commit whose aim is “bugfix,” we regarded the
source file before the commit as a faulty program. Although it
is a common way of extracting faulty programs, two or more
source files are simultaneously changed at the commit, and all
of their older revisions may not always be faulty ones; there
might be a source file that was accidentally changed at the
same time with another defective program. Such a mislabeled
faulty program might threaten the construct validity.

3) External Validity: We have examined 50 Python open-
source projects to analyze the relationship between the produc-
tion code’s fault-proneness and the test smells appearing in the
corresponding test code. We were not selective about which
project we studied to capture the general trend of the impact of
test smells on the production code’s fault-proneness. However,
because all our subject projects were actively developed and
maintained by more than ten contributors and have attracted
more developers (whose star scores are higher than 50), they
might be well-tested and well-reviewed projects. Therefore,
minor projects with fewer contributors might have different
fault-proneness trends than our results. It can threaten the
external validity of this study.

Another threat to the external validity is that we have
analyzed only 50 Python open-source projects using only
PyNose. We cannot say with absolute certainty that those
Python program samples reflect the general trends of fault-
proneness and test smells. We need to conduct further data
analysis with more projects, including open-source and com-
mercial ones, using various smell detection tools, not only
PyNose, to mitigate the threat to external validity.

IV. CONCLUSION AND FUTURE WORK

We focused on 18 kinds of test smells in Python test code
and conducted a quantitative investigation regarding the fault-
proneness of the production code tested by smelled test code
in this paper. As a result, for 10 out of 18 test smells, we
observed that the production code tested by the test code
having those smells tend to be more fault-prone. Moreover,
we also examine the impact of co-occurrence of test smells in
terms of fault-proneness and showed that 101 out of 134 test
smell combinations adversely affect the quality of production
code under test. Especially, the test smells “Constructor Ini-
tialization” and “Suboptimal Assert” showed stronger trends
that the Python production code would be more fault-prone

when those test smells occur in the corresponding test code.
Through our data collection and analysis, we could confirm
the importance of focusing on the quality of not only the
production code but the test code, resulting in the usefulness
of detecting and refactoring test smells as early as possible.

Our future work is a further analysis of test smell data
from various software domains using not only PyNose but
other smell detection tools to enhance the generalizability of
our findings. Moreover, the comparative study of the fault-
proneness of the production code tested by smelled test code
in various language (not only Python) is also our future work.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI #21K11831,
#21K11833, and #23K11382.

REFERENCES

[1] A. P. Mathur, Foundations of Software Testing. Delhi: Pearson
Education, 2008.

[2] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed.
Hoboken, NJ: John Wiley & Sons, 1999.

[3] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[4] K. Beck, Test Driven Development: By Example. Boston: Addison-
Wesley Professional, 2002.

[5] M. Fowler, Refactoring: Improving the Design of Existing Code, 2nd ed.
Hoboken, NJ: Addison-Wesley Professional, 2018.

[6] A. V. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring test
code,” in Proc. 2nd Int’l Conf. Extreme Prog. & Flexible Processes in
Softw. Eng, May 2001, pp. 92–95.

[7] T. Wang, Y. Golubev, O. Smirnov, J. Li, T. Bryksin, and I. Ahmed,
“Pynose: A test smell detector for python,” in Proc. 36th IEEE/ACM
Int’l Conf. Automated Softw. Eng., Nov. 2021, pp. 593–605.

[8] M. Greiler, A. Van Deursen, and M.-A. Storey, “Automated detection of
test fixture strategies and smells,” in Proc. IEEE 6th Int’l Conf. Softw.
Testing, V. & V., Mar. 2013, pp. 322–331.

[9] A. Peruma, K. S. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “On the distribution of test smells in open source android
applications: An exploratory study,” in Proc. 29th Annual Int’l Conf.
Comp. Sc. & Softw. Eng., 2019, pp. 193–202.

[10] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “tsDetect: an open source test smells detection tool,” in
Proc. 28th ACM Joint Europ. Softw. Eng. Conf. & Symp. Foundations
of Softw. Eng., Nov. 2020, pp. 1650–1654.

[11] S. Lambiase, A. Cupito, F. Pecorelli, A. De Lucia, and F. Palomba, “Just-
in-time test smell detection and refactoring: The darts project,” in Proc.
28th Int’l Conf. Program Comprehension, May 2020, pp. 441–445.

[12] T. Virgı́nio, L. Martins, L. Rocha, R. Santana, A. Cruz, H. Costa, and
I. Machado, “Jnose: Java test smell detector,” in Proc. 34th Brazilian
Symp. Softw. Eng., Oct. 2020, pp. 564–569.

[13] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in Proc. IEEE
Int’l Conf. Softw. Maintenance & Evol., Sep. 2018, pp. 1–12.

[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,” in Proc.
11th Working Conf. Mining Softw. Repositories, May 2014, pp. 92–101.

[15] W. M. Bolstad and J. M. Curran, Introduction to Bayesian Statistics,
3rd ed. Hoboken, NJ: Wiley, 2016.

[16] H. Jeffreys, “An invariant form for the prior probability in estimation
problems,” Proc. Royal Society of London. Series A, vol. 186, no. 1007,
pp. 453–461, Sep. 1946.

[17] F. Maier and M. Felderer, “Detection of test smells with basic language
analysis methods and its evaluation,” in Proc. IEEE Int. Conf. Softw.
Analysis, Evolution & Reeng., Mar. 2023, pp. 897–904.

