
Have Java Production Methods Co-Evolved With
Test Methods Properly?: A Fine-Grained
Repository-Based Co-Evolution Analysis

Tenma Kita∗, Hirohisa Aman†, Sousuke Amasaki‡, Tomoyuki Yokogawa‡ and Minoru Kawahara†

∗Department of Computer Science, Faculty of Engineering, Ehime University
Matsuyama, Ehime, 790–8577 Japan

†Center for Information Technology, Ehime University
Matsuyama, Ehime, 790–8577 Japan

‡Faculty of Computer Science and Systems Engineering, Okayama Prefectural University
Soja, Okayama, 719–1197 Japan

Abstract—Any source code of a software product (production
code) is expected to be tested to ensure its correct behavior.
Whenever a developer updates production code, the developer
should also update or create the corresponding test code to check
if the updated parts still work correctly. Such a desirable co-
evolution relationship between production and test code forms
a logical coupling. Although the logical coupling is detectable
through an association analysis on the code repository such as
Git, the detection granularity is coarse because the conventional
repository is at the file level. For observing those logical couplings
as precisely as possible, this paper utilizes the finer-grained, Java
method-level repository (FinerGit). Then the paper proposes a
metric measuring the extent to which a production method has
co-evolved with test methods and conducts a case study using ten
open-source projects. The results show that most Java methods
(98% on average) have co-evolved with test methods, but some
have not; The proposed metric helps detect those methods having
the potential risk that the developers might not test adequately.

Index Terms—logical coupling, metric, co-evolution between
production and test code, fine-grained code repository

I. INTRODUCTION

Software products usually evolve through various source
code changes, including new code additions, existing code
deletions, or modifications [1]. Although source code changes
are inevitable in the successful software evolution, they also
risk introducing new bugs into the software product [2]. Hence,
developers should test their products whenever they update the
source code. To this end, when developers change the prod-
uct’s source code (production code), the developers should also
create or modify the test code (unit test cases) corresponding
to the updated production code [3], [4]. Moreover, even when
developers fix bugs in production code, they should add or
modify their test code because the existing test code has failed
to detect those bugs. Therefore, it is ideal that any production
code needs to co-evolve with the corresponding test code [5].
We can observe such a co-evolution as a logical coupling [6]
between production and test code.

Logical couplings between two software artifacts (e.g.,
source files) are detectable through association analysis in
the software repository [7]—If one artifact’s change appears

in a commit, how likely is another artifact’s change also
to appear in the same commit? The granularity of logical
coupling detection depends on the unit of commits to the
code repository. Since the commit unit of prevailing code
repositories such as Git is a file, the logical coupling detection
is also at the file level. However, because the implementation
unit of a product’s functionality or a test case can be finer-
grained (e.g., method or function), a file-level analysis seems
to be coarse and insufficient. To overcome this issue of
granularity, we utilize a fine-grained code repository, FinerGit
developed by Higo et at. [8], in this paper. FinerGit can convert
the conventional file-level Git repository of Java software to a
method-level one and allow us to analyze the logical couplings
between production and test code at the Java method level.

Although there have been studies regarding fine-grained co-
evolution cases (logical couplings) between production and
test code [5], [9], [10], their main focuses were on under-
standing the evolution patterns. There may also be problematic
production code that has not been co-evolved with test code
in practice, and such a production code was out of scope
in the above co-evolution pattern analyses because it had
weak or no logical coupling with the test code and thus did
not appear in the association rules. Nonetheless, to prevent
unexpected regressions during software evolution, detecting
such a production code having poor or no logical coupling
with the test code is still significant. In this paper, to detect
the above potentially problematic production code (method)
automatically, we propose a metric for evaluating the logical
coupling of a production method with test methods by utilizing
a state-of-the-art fine-grained code repository.

II. RELATED WORK

Luben et al. [9] emphasized the successful maintenance of
test cases in test-driven development. They conducted case
studies of co-evolution between production and test code using
two software development projects. Their study regarded Java
classes and JUnit classes as production and test code, re-
spectively, and performed association analyses between them.

Then, they identified some logical couplings between Java
production classes and JUnit test classes in those software
products, but the strength of coupling differed from project
to project. Although the work by Luben et al. is a valuable
previous study of the production-test code co-evolution rela-
tionships, the analysis is at class-level and coarse-grained. To
analyze those relationships from a finer-grained point of view,
we utilize a method-level code repository in this paper.

Marsavina et al. [5] performed a fine-grained code change
analysis to extract co-evolution patterns between production
and test code. They utilized ChangeDistiller [11] to examine
code changes in a detailed manner. Furthermore, they built
(compiled) and ran the test programs for each revision of
the studied software products and analyzed test coverages.
Through those rich code analyses on five open-source develop-
ment projects, Marsavina et al. found six primary co-evolution
patterns, such as “a production class addition/removal tends to
cause a test class addition/removal.” Vidács and Pinzger [10]
conducted a replication study of [5] and reported that they also
identified the same six co-evolution patterns but the logical
couplings between production and test code were weaker than
that Marsavina et al. reported.

The previous studies [5], [10] yield profound insights into
co-evolution relationships between production and test code
through their detailed and rich change analyses. Moreover,
they performed manual qualitative analyses of co-evolution
patterns and found some problematic production methods (pro-
duction code) that were not covered by any test code. Although
poor-tested production code is out of their co-evolution pattern
extractions, it is also vital to automatically detect such a
problematic production code to make the developers aware
of them for successful software evolution. Thus, we aim to
detect problematic methods having poor or no logical coupling
with the test methods by quantifying the extent to which
a production method has co-evolved with test methods. We
can easily evaluate logical couplings between production and
test methods without any rich code analysis performed in
the previous work [5], [10] since we utilize a Java-method-
level code repository [8] rather than the conventional file-level
repository in this paper.

III. LOGICAL COUPLING BETWEEN PRODUCTION AND
TEST METHODS

This section briefly describes the logical coupling between
production and test methods. Notice that our approach relies
on the assumption that the developers commit their co-change
events to the Git repository in a disciplined manner.

A. FinerGit: A Fine-Grained Repository For Java Methods

Higo et al. [8] developed “FinerGit,” a Git-based tool that
allows easy version control of Java methods. The tool converts
a Git repository managing Java source files into another Git
repository with the following two features.
(1) Manage a Java method as a file: FinerGit extracts
Java methods from source files and stores the methods in
separate files. Each file contains a single method, and the

file name corresponds to the method’s signature as “class-
Name#methodSignature.mjava.” Then, the tool produces a new
Git repository to represent all the past code changes regarding
Java methods as “commits” of the corresponding “.mjava”
files. We can explore the change history of Java methods using
the conventional Git commands in the produced repository.
Therefore, we can efficiently perform the co-evolution analysis
of Java methods without any rich program analysis techniques.
(2) Store a method in the one-token per line style: A
mjava file maintains the corresponding method in the one-
token per line style. One-token per line style aids the Git
repository in successfully tracking the method renames and
signature changes. Git repository has a function to keep track
of renaming a file at a commit. Suppose both a file deletion
and a file addition occur at the same commit, and the similarity
between those two files is higher than a certain threshold1. In
that case, Git regards it as a file “renaming” rather than a
pair of file deletion and addition. For evaluating the similarity
between two files, the repository computes the hash value
for each line (or 64-byte block) of the files and compares
their hash-value distributions. However, such a Git’s rename-
detection mechanism is likely to miss method-renaming cases
and method signature-changing cases because many small
methods consist of a few lines of code. Hence, FinerGit adopts
the one-token per line style to overcome such a challenge.

B. Logical Coupling Between Production and Test Methods
Suppose M is the set of production methods, and T is the

set of test methods. Now we consider a co-evolution between
a production method mp(∈ M) and a test method mt(∈ T)
with the following association rule: if the developers change
mp, they also change mt. We denote that rule by “mp ⇒ mt.”
Moreover, we denote the number of co-change commits where
the developers changed both mp and mt, by “σ(mp ∧ mt).”
Notice that we can track the method-renaming and signature-
changing cases mentioned in Section III-A and include them
in the count of co-change commits. Similarly, let σ(mp) be the
number of commits changing mp. Then the following value
is called the confidence of mp ⇒ mt:

conf (mp ⇒ mt) =
σ(mp ∧mt)

σ(mp)
.

The confidence value indicates a likelihood of the co-change
occurrence when mp is changed. Hence, we can regard
conf (mp ⇒ mt) as a conditional probability of co-change,
P (mt is changed | mp is changed).

We can detect logical couplings between methods by fo-
cusing on the confidence value. A confidence value presents
the strength of logical coupling. Notice that the above logical
coupling detection relies on the developers’ commit manners;
if they did not commit their production methods and the cor-
responding test methods simultaneously, we fail to detect their
couplings. We need to employ an advanced detection approach
to cover such a delayed (time-lagged) logical coupling, and it
is our significant future work.

1Git’s default threshold is 50%.

C. Evaluation Metric

Whenever a developer adds a new production method or
updates an existing one, the developer should also add or
edit the test method corresponding to the added/updated parts
to avoid unexpected regressions. We propose a metric for
evaluating the certainty that a production method’s change
links to one or more test methods’ changes below.

Here we define the following extended confidence value
conf ∗(mp,i) since there may be two or more corresponding
test methods for one production method:

conf ∗(mp,i) = 1−
|T |∏
j=1

{
1− conf (mp,i ⇒ mt,j)

}
,

where mp,i is the i-th method in our production method set
(M), and mt,j is the j-th method in our test method set (T).
conf ∗(mp,i) is the probability that a change of mp,i links
to at least one test method’s change. In other words, a low
confidence value indicates that the production method has not
co-evolved with any test methods successfully.

conf ∗(mp,i) evaluates the logical coupling of the produc-
tion method mp,i with any test methods mt,j (∀j). Further-
more, we also need to consider the logical coupling of the pro-
duction method mp,i with other production methods because
there may be indirect relationships between production and test
methods. For example, suppose there is a production method
mp,k calling other production methods mp,k+1 and mp,k+2. In
that case, the developer might prepare test methods only for
the callee methods (mp,k+1 and mp,k+2) because those test
methods indirectly test the caller method (mp,k). We propose
the following metric covering both the direct and the indirect
relationships between production and test methods:

Tconf (mp,i)

= 1−
|M |∏
k=1

{
1− conf (mp,i ⇒ mp,k) · conf ∗(mp,k)

}
.

In the above equation, “conf (mp,i ⇒ mp,k) · conf ∗(mp,k)”
presents the joint probability of the following (i) and (ii):
(i) mp,i co-evolves with mp,k, and (ii) mp,k co-evolves with
at least one test method. Thus, “1 − conf (mp,i ⇒ mp,k) ·
conf ∗(mp,k)” represents the probability that mp,i does not
co-evolve with any test methods via mp,k. By considering
the joint probability of them for all production methods, our
metric Tconf (mp,i) evaluates the likelihood that the produc-
tion method mp,i co-evolves with at least one test method in
either direct or indirect manners. In other words, a production
method with a low Tconf value might be problematic as it
has not been co-evolved with test methods.

IV. CASE STUDY

We conducted a case study using ten Apache top-level open-
source projects (see Table I) to demonstrate how the proposed
metric Tconf helps detect the problematic Java methods that
have not been co-evolved with test methods. We report and
discuss the study results in this section.

TABLE I
STUDIED PROJECTS

Project Name Data Collection # of # of
(Git repository) Period Commits Methods

Curator (curator.git) 2011-07-14 – 2021-12-15 2,739 3,876
Fineract (fineract.git) 2012-04-20 – 2021-12-17 6,368 21,141
Flume (flume.git) 2011-08-09 – 2022-01-14 1,832 5,105
Maven (maven.git) 2003-09-01 – 2021-12-17 11,502 7,481
Parquet 2012-08-31 – 2021-12-16 2,320 6,574(parquet-mr.git)
PDFBox (pdfbox.git) 2008-02-10 – 2021-12-20 10,539 11,768
Ranger (ranger.git) 2014-08-14 – 2021-12-17 3,760 13,979
RocketMQ 2016-12-20 – 2022-01-19 1,955 8,742(rocketmq.git)
Shiro (shiro.git) 2005-07-14 – 2022-01-15 2,210 4,088
Zookeeper 2008-03-19 – 2021-11-27 2,371 7,498(zookeeper.git)

A. Results

We extracted 71,730 Java production methods and 18,522
test methods from the studied projects; we regarded the Java
methods in Java source files whose paths include “test”
as the test methods and considered the remaining ones as
the production methods. Then, we computed Tconf values
for each production method. As a result, most values were
approximately 1.0, and the average Tconf values were 0.9557
– 0.9996 for all projects2.

Table II presents the percentage of methods classified by
three categories: “Tconf ≃ 1,” “0.5 ≤ Tconf ≤ 0.999,” and
“0 ≤ Tconf < 0.5,” where we regard “0.999 < Tconf ≤ 1”
as Tconf ≃ 1 by considering round-off errors of floating point
numbers in our Tconf computation. As a result, about 98%
of production methods show Tconf ≃ 1 on average. Those
results indicate that most production methods have co-evolved
with test methods in the ten studied projects.

However, Table II shows that some production methods
have low Tconf values, i.e., they have not co-evolved with
test methods. Here, we focus on the production methods
whose Tconf values are less than 0.5; Since the co-change
probability is less than 0.5, such a production method is
not likely to co-evolve with test methods, and it might be
a problematic method from the viewpoint of testing. The
percentages of such problematic methods were less than 1%
in nine out of ten projects (see Table II). Only the PDFBox
project showed a different tendency from the others, and the
percentage of such production methods was 3.87%.

B. Discussions

We conducted a case study using ten open-source software
development projects to observe how the proposed metric
Tconf works to detect problematic production Java methods
from the viewpoint of the co-evolution relationship between
production and test methods. As a result, we found that the
Tconf values of about 98% of production methods are ap-
proximately equal to 1, i.e., those production methods have co-
evolved with one or more test methods. Thus, we can say that

2The set of experimental data obtained in this study is available at our
supplemental data site https://bit.ly/3Ekurdc.

TABLE II
PERCENTAGES OF PRODUCTION METHODS CLASSIFIED BY Tconf VALUES

Project Name Tconf < 0.5 0.5 ≤ Tconf ≤ 0.999 Tconf ≃ 1
Curator 0.43% 0.64% 98.93%
Fineract 0.04% 0.04% 99.92%
Flume 0.27% 0.59% 99.14%
Maven 0.76% 1.94% 97.30%
Parquet 0.13% 0.04% 99.82%
PDFBox 3.87% 7.65% 88.49%
Ranger 0.46% 1.92% 97.62%
RocketMQ 0.29% 0.12% 99.59%
Shiro 0.03% 0.23% 99.74%
Zookeeper 0.37% 0.13% 99.49%
Average 0.67% 1.33% 98.00%

the developers have successfully developed and maintained
most Java production methods with the test methods in the
studied projects.

Nonetheless, we also found some production methods with
low Tconf values. For example, Tconf value of method
“PDPropBuildDataDict#public String getVersion” in the
PDFBox (Fig. 1) was zero. We explored the method-level
repository and noticed it appeared in the commit history
only once. That is, the method has not been changed after
its creation. Although that method was a simple “getter”
method, as shown in Fig. 1, it would be better to prepare the
corresponding test method. However, some developers might
not make unit test cases for such simple methods in practice
because they look less likely to be buggy.

We take the existence of simple production methods like
Fig. 1 into account and filter out the production methods
satisfying both of the following two conditions: (i) it has
appeared in the commit history only once, and (ii) it has the
lowest cyclomatic complexity [12], i.e., it contains no branch
statement (e.g., if, for, while); The lowest cyclomatic
complexity (=1) indicates that the method has a single exe-
cution path and is the most straightforward code under test.
Table III shows the number and percentage changes of the
problematic production methods whose Tconf values are less
than 0.5 before and after filtering the simple methods out.

As shown in Table III, all production Java methods with
Tconf < 0.5 disappeared in six out of ten projects through the
above filtering, and a few stayed in three out of the remaining
four projects. Although all projects showed a significant
decrease in such methods, only the PDFBox project still has
many (=118; 1.14%). We found a Java production method
“addPath(PDAppearanceContentStream,GeneralPath)”
of class “PDTextAppearanceHandler” in package “org
.apache.pdfbox.pdmodel.interactive.annotation.handlers,”
whose LOC = 44 and cyclomatic complexity = 7. While this
method has appeared in the commit history twice, it has not

public String getVersion()
{

return dictionary.getString("REx");
}

Fig. 1. Source code of PDPropBuildDataDict#public String getVersion.

TABLE III
NUMBER AND PERCENTAGE OF PRODUCTION METHODS WITH

Tconf < 0.5 BEFORE AND AFTER FILTERING THE SIMPLE ONES OUT

of Methods (Percentage)
Project Name Before Filtering After Filtering
Curator 12 (0.43%) 0 (0.00%)
Fineract 7 (0.04%) 0 (0.00%)
Flume 7 (0.27%) 0 (0.00%)
Maven 44 (0.76%) 1 (0.02%)
Parquet 6 (0.13%) 0 (0.00%)
PDFBox 403 (3.87%) 118 (1.14%)
Ranger 55 (0.46%) 6 (0.05%)
RocketMQ 20 (0.29%) 3 (0.04%)
Shiro 1 (0.03%) 0 (0.00%)
Zookeeper 17 (0.37%) 0 (0.00%)

been co-evolved with any other production or test methods,
i.e., its Tconf value is zero. Since the method is not simple
in terms of LOC and cyclomatic complexity, it is ideal to
co-evolve with one or more corresponding test methods during
the development. Nevertheless, it can be a potential problem
that the method also has no (indirect) logical coupling to any
test methods (Tconf = 0). Although developers might test
such a method in another way, we consider it is worth it to
alert the presence of such a production method and make the
developers aware of the risk of missing the method’s test to
prevent unexpected regressions.

Finally, we discuss the differences among projects from the
viewpoints of the production-test method ratio and the number
of developers. Table IV compares projects using two metrics:
PTR (Production-Test method Ratio),

PTR =
number of production methods

number of test methods
,

and NDEV (Number of DEVelopers). The higher PTR value
indicates fewer test methods for the production ones in the
project. As the PDFBox project has the second-highest PTR
value, following the Fineract project (see Table IV), these
two projects prepare fewer test methods for the number of
their production methods than the other projects. However,
NDEV values differ substantially between these two projects:
the NDEV value of the Fineract project is 164, and that of the
PDFBox project is only 6. Hence, the testing of production
methods may depend on a small group of developers, and
there would be a higher risk of overlooking regressions during
maintenance activities.

TABLE IV
A COMPARISON OF PROJECTS USING PTR AND NDEV

Project Name PTR NDEV
Curator 2.6 108
Fineract 8.3 164
Flume 1.0 55
Maven 3.5 151
Parquet 2.2 166
PDFBox 7.8 6
Ranger 5.9 88
RocketMQ 3.6 320
Shiro 5.0 56
Zookeeper 1.5 163

Notice that a low Tconf value does not directly indicate
the poor quality of the production method. Nonetheless, the
proposed metric Tconf can detect the methods that have not
been successfully co-evolved with test methods. By alerting
such potentially problematic production methods to the de-
velopers, Tconf can contribute somewhat to the successful
software evolution. We plan to validate the usefulness of our
metric by asking the developers for feedback in the future.

C. Threats to Validity

1) Construct Validity: We proposed the metric Tconf to
measure how a Java production method has properly co-
evolved with one or more test methods. Our measurement
is based on the co-change events (commits) of Java methods
observed in the code repository. Thus, the fundamental factor
is the number of commits in which both the production and
the test method changed. However, there might be cases where
the test code’s commits occurred after the production code’s
commits [13]. Such a delayed logical coupling is a threat
to the construct validity in this study, and we need further
investigation regarding it in the future.

2) Internal Validity: Because we often see the commits
involving changes in methods’ names and signatures, it is
crucial to accurately track the renaming commits in the
method-level repository. In other words, the accuracy of the
rename-commit tacking is a threat to the internal validity of
this study. To mitigate the threat, we utilized the state-of-
the-art tool (FinerGit) that outperforms the conventional one
(Historage [14]) regarding rename tracking accuracy. However,
if there was a renaming commit with many code changes,
we might mistakenly treat it as a pair of method addition
and deletion. Furthermore, some changes in production meth-
ods might be non-functional changes such as refactoring or
comment changes. As such changes do not require test code
changes, our metric may make some false-positive alerts. We
need to employ a richer code-change analysis to control such
false-positive cases, and it is our significant future work.

3) External Validity: Our case study examined ten Apache
top-level projects. Although they are popular and well-
managed projects, they cannot become the representative ones
reflecting all Java software developments. Different projects
driven by other organizations or individuals may have different
styles of managing their test methods. Especially, it would be
an impactful factor if they adopt the test-driven development
or not. Moreover, our study did not investigate projects with
development languages other than Java. The above things can
be threats to the external validity of this study.

V. CONCLUSION AND FUTURE WORK

Whenever a production method is changed, the correspond-
ing test methods are ideal to be updated or created to test
the modified code at the same commit. Such co-evolution
relationships ensure successful software maintenance and evo-
lution. Thus, we focused on the co-evolution (logical coupling)
between production and test methods and utilized FinerGit to
track method-level code change history in this paper. Then,

we proposed Tconf as a metric for evaluating how a Java
production method has properly co-evolved with test methods.

Through a case study of Tconf using ten open-source Java
software development projects, we showed most production
methods (about 98% on average) had been co-evolved with
test methods successfully, but some methods were not; We
could detect the potential problematic production methods that
have not been co-evolved with any test method using the
proposed metric Tconf . Although it does not directly imply
those production methods are poor quality, it is worth it to
make the developers aware of the potential risk that they might
not test those methods adequately. The proposed metric Tconf
is helpful to alert such production methods.

Our future work includes (1) a validation study of Tconf by
getting feedback from the developers, (2) an empirical study
of the relationship between Tconf value and the overlooked
faults, and (3) further analyses focusing on the code change
details and the delayed logical couplings where the test
method’s commit occurs after the production one’s commit.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI #20H04184,
#21K11831, and #21K11833.

REFERENCES

[1] I. Sommerville, Software Engineering, 10th ed. Essex: Pearson
Education, 2016.

[2] C. Jones, Applied Software Measurement: Global Analysis of Produc-
tivity and Quality, 3rd ed. New York: McGraw-Hill, 2008.

[3] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proc. IEEE Int’l Conf.
Softw. Maintenance, Nov. 2001, pp. 170–179.

[4] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software repositories to study co-evolution of production amp;
test code,” in Proc. 1st Int’l Conf. Softw. Testing, V. & V., Apr. 2008,
pp. 220–229.

[5] C. Marsavina, D. Romano, and A. Zaidman, “Studying fine-grained co-
evolution patterns of production and test code,” in Proc. 14th IEEE
Int’l Working Conf. Source Code Analysis & Manipulation, 12 2014,
pp. 195–204.

[6] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. Int’l Conf. Softw. Maintenance, Nov.
1998, pp. 190–198.

[7] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proc. 26th Int’l Conf. Softw.
Eng., Jul. 2004, pp. 563–572.

[8] Y. Higo, S. Hayashi, and S. Kusumoto, “On tracking java methods with
git mechanisms,” J. Syst. Softw., vol. 165, pp. 110 571:1–13, Jul. 2020.

[9] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using association rules to
study the co-evolution of production amp; test code,” in Proc. 6th IEEE
Int’l Working Conf. Mining Softw. Repo., May 2009, pp. 151–154.

[10] L. Vidács and M. Pinzger, “Co-evolution analysis of production and
test code by learning association rules of changes,” in Proc. 2018 IEEE
Workshop Machine Learning Tech. for Softw. Q. Eval., Mar. 2018, pp.
31–36.

[11] B. Fluri, M. Wursch, M. PInzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” IEEE
Trans. Softw. Eng., vol. 33, no. 11, pp. 725–743, Nov. 2007.

[12] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol. SE-
2, no. 4, pp. 308–320, Dec. 1976.

[13] A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer, “Studying
the co-evolution of production and test code in open source and industrial
developer test processes through repository mining,” Empr. Softw. Eng.,
vol. 16, no. 3, pp. 325–364, Jun. 2011.

[14] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-
grained module histories,” in Proc. 34th Int’l Conf. Softw. Eng., May
2012, pp. 200–210.

