IEICE TRANS. INFE. & SYST., VOL.E101-D, NO.10 OCTOBER 2018

2523

[LETTER

A Quantitative Analysis on Relationship between an Early-Closed
Bug and Its Amount of Clues: A Case Study of Apache Ant

Akito SUNOUCHI', Nonmember, Hirohisa AMAN'®, and Minoru KAWAHARA ", Members

SUMMARY Once a bug is reported, it is a major concern whether or
not the bug is resolved (closed) soon. This paper examines seven metrics
quantifying the amount of clues to the early close of reported bugs through
a case study. The results show that one of the metrics, the similarity to
already-closed bug reports, is strongly related to early-closed bugs.

key words: bug report, early close, amount of clues, metrics, POS tagger

1. Introduction

Software failures may occur during an operation of a soft-
ware product, and these failures are reported to the develop-
ment project as bug reports. A bug report usually provides
failure information including the symptom and the status,
etc. The development project confirms the details of re-
ported failure and starts to detect and fix the cause (fault).
Although it is ideal to solve all bugs* soon, some bugs take
a long time, e.g., one year or more, until they are resolved
(closed). If a bug fix requires a long time, we have to take
an alternative approach in order to continue the operation
while avoiding the failure. Thus, it is a significant challenge
to predict whether a reported bug is early closed or not.

In recent years, there have been studies on data of
bug reports which are useful for predicting early-closed
bugs [1]-[3]. While the posted bug report itself is an essen-
tial information source to resolve the corresponding bug, we
believe it may also be worthwhile to focus on the relation-
ships of the bug report with other available artifacts—other
bug reports and source files. In this paper, for each reported
bug, we focus on not only the posted bug report but also
other already-closed bug reports and source files which were
available at the time when the bug was reported. Then, we
quantify the amount of clues from these available data, and
analyze which kind of data are related to early-closed bugs.

2. Available Information When a Bug is Reported
2.1 Motivation
As mentioned above, when a bug is reported, the develop-

ment project starts to analyze the bug and resolve it. If a bug
report provides richer information about the bug, it is easier

Manuscript received April 27, 2018.
Manuscript revised June 11, 2018.
Manuscript publicized June 22, 2018.
"The author is with Department of Computer Science, Ehime
University, Matsuyama-shi, 790-8577 Japan.
"'The authors are with Center for Information Technology,
Ehime University, Matsuyama-shi, 790-8577 Japan.
a) E-mail: aman@ehime-u.ac.jp
DOI: 10.1587/transinf.2018EDL8094

to detect the corresponding fault for developers, and the bug
would be closed earlier. Karim et al. [3] empirically showed
that one of notable points is whether or not an error message
is given in the bug report. While a bug report is a useful in-
formation source about the bug, we have yet another ques-
tion if other available information can also play an important
role for an early close of the bug. That is to say, since the
following items are also available when a bug is reported,
we will focus on them as well: (1) already-closed bug re-
ports and (2) source files. The main reasons why we focus
on these two kinds of items are as follows. (1) If there is an
already-closed bug which is related to or similar to the newly
reported bug, the fix information of the already-closed bug
may help an early close of the new bug. (2) Since [3] showed
that an error message given in a bug report is a useful clue
and such an error message must be printed by a source code,
associations of the reported bug with source files would also
be noteworthy to detect the corresponding fault.

2.2 Quantifying the Amount of Clues

In order to quantify the amount of clues, we extract tokens
from bug reports and source files, then perform the mor-
phological analysis, i.e., we transform them into their ba-
sic forms and decide their parts of speech (POS). For each
bug report and source file, we single out nouns (or poten-
tial nouns) as the feature terms according to the previous
work by Abebe and Tonella [4], and form the term set corre-
sponding to the bug report/the source file; “potential nouns”
are the terms which we could not automatically decide their
POS by the POS tagger we used. Since some variable names
or path names are not successfully processed by natural lan-
guage processing tools, we decided to include these terms
into our feature term set as well. In this paper, we will use
the Tree Tagger [5] as the tool (POS tagger) according to
the results of the comparative study conducted by Tian and
Lo[6].

We now explain how to extract the feature terms from
(1) a bug report and (2) a source file in detail. (1) For
a bug report, we first make a text file which contains the
“description” part and the “comment” parts of the corre-
sponding bug report: the former is the original bug report
by the corresponding reporter and the latter ones are com-
ments or replies to the report. In the Bugzilla XML format,

*We will use term “bug” to indicate both software failure and
fault in this paper. A bug fix means that the corresponding fault is
fixed and the corresponding failure does not occur.

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

2524

they can be easily extracted by focusing on <thetext> - --
</thetext> tags. Then we parse the text file by using the
Tree Tagger, and single out the feature terms (nouns) from
the output. Since the Tree Tagger automatically extracts to-
kens from the document, and performs the stemming and
the decision of POS, we do not perform any special prepro-
cessing for the text file, but just use the text file as an input
document. (2) For a source file, we have no special prepro-
cessing; we just regard a source file as a document. That
is to say, we directly parse a source file by using the Tree
Tagger, and extract feature terms from the output. Although
we considered removing stop words from bug reports and
source files, we decided to use a naive way without any
preprocessing—just using a POS tagger for both a bug re-
port and a source file—in this study; Since we extract only
(potential) nouns, many English stop words (e.g., “an,” “at,”
“is”) are excluded. Moreover, because we have no reason-
able set of stop words which are common to both types of
documents (bug reports and source files), we considered that
making a common stop word list can be yet another threat
to validity. We would like to perform a further experiment
involving such preprocessing techniques as our future work.

We evaluate the amount of clues from two points of
view: (i) the posted bug report itself, and (ii) similarities
of the bug report to other already-closed bug reports or to
source files. For the point of view (i), we focus on features
of the term set corresponding to the bug report. If the bug re-
port has aricher vocabulary, it may provide useful clues. For
(ii), we evaluate a similarity between bug reports or a sim-
ilarity between a bug report and a source file by comparing
the corresponding term sets. When a new bug is reported, if
there is an already-closed bug report which is similar to the
new bug report, the precedent bug report may be a useful
clue toward an early resolution of the new bug. Moreover,
if there is a source file having a high similarity to the bug
report, such a source file might be a helpful clue as well.

To quantify the amount of clues, we define seven met-
rics shown in Table 1. Metrics TC and UTC measure the
appearance count of terms and the unique count of them in
the bug report, respectively. Metric VOL is an integrated
score which is made from TC and UTC; the integration is
inspired by the program volume metric in Halstead’s the-

9 <

Table 1

metric description
TC(b) # of terms appearing in b

Metrics for quantifying amount of clues.

UTC(b) # of unique terms appearing in b
VOL(b) VOL(b) = TC(b) - log, {UTC(b)}
MIB(b) max; {(Jac(b, b))

MCB(b) max; {Com(b, b))}

MIS() max; {Jac(b, 5,

MCS(b) max; {Com(b, s))}

b : the bug report of interest.

b; : an already-closed bug when b is reported.

sj : a source file existing when b is reported.

Jac(-,-) : Jaccard index between two documents.

Com(-,-) : # of unique terms appearing in both documents.

IEICE TRANS. INF. & SYST., VOL.E101-D, NO.10 OCTOBER 2018

ory [7]. Each of the remaining four metrics quantifies a sim-
ilarity between bug reports or between a bug report and a
source file. We consider that two artifacts are similar as they
have more common terms, and we quantify the similarity
using two measures: the Jaccard index and the number of
common terms. Then, we evaluate the amount of clues by
using the metric value of the most similar pair.

3. Case Study

In order to examine the above seven metrics, we conducted
a case study where we analyzed 1,280 bug reports in the
Apache Ant project: all of them were closed by January 1st,
2018. We report the results in this section.

Our aim of this study is to show whether or not the
amount of clues mentioned above is related to an early close
of bug. We examined different seven ways of quantifying
the amount of clues by the metrics shown in Table 1. In
this study, let a bug be an early-closed bug if its status in
Bugzilla was changed to “RESOLVED,” “VERIFIED” or
“CLOSED” within 30 days from the bug was reported. No-
tice that all of these bug reports are new bugs and not du-
plicated ones. In our dataset, 369 out of 1,280 bug reports
(28.8%) were early-closed ones. Table 2 presents the dis-
tribution of days that bug reports required to be closed: The
median (see “50%” column of Table 2) is longer than 1 year,
so there are many bug reports which are not closed for a long
period in the real. This distribution also shows the impor-
tance of predicting whether a posted bug report will be early
closed or not.

For each of seven metrics, we categorize the set of bug
reports into four subsets By, B, B3 and By, according to
their metric values as follows. Let v(b) be a metric value of
bug report b. If v(b) < Q) then b € By; if O < v(b) < Q>
then b € By; if 0> < v(b) < Q3 then b € Bs; if v(b) > QO3
then b € B4, where Q;, O, and Qs are the 25 percentile, the
median and the 75 percentile, respectively. B; is a set of bug
reports having richer information than B; if i > j.

We computed the rate of early-closed bug reports (the
early-close rate: ECR) in B; (fori = 1,2, 3,4) and compared
them. Table 3 and Fig. 1 present the results.

As a result, for only metric MJB, the ECR values
monotonically increased from B; toward B; (emphasized in
Fig. 1), and the difference of ECR values between B; and
B, was statistically significant at @ = 0.01 (y*> = 76.586,
df =1, p <22x 10716). Moreover, these ECR values
in B and B, are the minimum value and the maximum one
among all results shown in Table 3, respectively. Thus, met-
ric MJB seems to be strongly related to whether a bug report
is early closed or not. Metric MJB quantifies the amount of
clues as the highest similarity of the new bug report to other
already-closed bug reports, in terms of the Jaccard index.
The presence of such a similar bug report would become a

Table 2 Distribution of days to bug close.

min 25% 50% 75% max
0.001 15.621 392214 913.855 4072.212

LETTER

Table3 Comparison of the ECRs among bug report categories.
ECR
metric B B> B3 By
TC 0311 0329 0.282 0.243

UTC 0326 0.280 0.291 0.255
VOL 0316 0300 0.290 0.246
MIB 0.158 0.234 0.249 0.463
MCB 0276 0291 0.268 0.311
MIS 0332 0285 0.248 0.288
MCS 0306 0.289 0.292 0.269

0.5
MJB,

03*\

ECR

0.2

metric

0.1 «\VOL

0.0

B1 B4

B2 B3
Bug report category by the amount of clues

Fig.1 Comparison of the ECRs among bug report categories.

help for resolving the newly reported bug.

Three metrics regarding the amount of descriptions in
a new bug report itself—TC, UTC and VOL—did not show
increase trends of ECR values’. That is to say, even if a
bug report contains more terms (words), its ECR does not
get higher; A more detailed data collection like [3] would be
needed for predicting if it is early closed or not.

Two metrics focusing on relationships with source
files—MIJS and MCS—also did not seem to be related to
ECR values. Since we analyzed source files in the same
manner as we did for bug reports, the set of terms extracted
from source files might be a mixture of wheat and chaff
in this study. A more sophisticated analysis would be re-
quired to make a useful link between a source file and a
bug report. For example, there are identifiers consist of two
or more words, e.g., “dataFile” which can be split into
“data” and “file.” Moreover, there are also abbreviations
of words in identifiers such as “idx” which is an abbrevia-
tion of “index.” They might become useful clues if those
compound names are properly split and abbreviations are
appropriately expanded before the POS tagger analysis. We
plan to perform such preprocessing for identifiers by lever-
aging the identifier-split/expansion studies [8], [9] in the fu-
ture. Furthermore, a semantic analysis such as the topic
modeling [10], [11] would also be useful to mine yet another
link between a bug report and a source file. This is also our
important future work.

4. Conclusion

For a newly reported bug, we proposed to measure the

TOn the other hand, the ECR values showed a monotonic de-
crease trend for metric VOL. However, its difference between B,
and B, was not significant (y* = 3.4983, df = 1, p = 0.06143).

2525

amount of clues to the resolution (close) by seven metrics.
Then, in order to examine these metrics, we conducted a
case study using a set of bug reports in the Apache Ant
project. As aresult, one of these metrics, the maximum sim-
ilarity (Jaccard index) between bug reports, showed a posi-
tive relationship with the early close rate of bug report. That
is to say, when a new bug is reported, if there is a more sim-
ilar bug report which is already closed, the new bug is ex-
pected to be closed earlier. Since the proposed metric can be
automatically and easily measured, the result of this empir-
ical study would be a useful help toward a better prediction
if a reported bug is closed or not.

Our future work includes: (1) to conduct an empiri-
cal study involving a larger set of bug reports in order to
clarify the generality of our results; (2) to perform a more
detailed analysis on the content of bug reports and source
files, together with a proper stop word elimination and an
appropriate identifier splitting/expanding, for enhancing the
accuracy of prediction; (3) to do further studies focusing on
the number of similar and already-closed bug reports, and/or
the properties of already-closed bugs such as their priorities
and their difficulties to resolve, etc.

Acknowledgments

This work was supported by JSPS KAKENHI #16K00099.
The authors would like to thank the anonymous reviewer for
the helpful comments to an earlier version of this paper.

References

[1] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter,
and C. Weiss, “What makes a good bug report?,” IEEE Trans. Softw.
Eng., vol.36, no.5, pp.618-643, Sept. 2010.

[2] S. Davies and M. Roper, “What’s in a bug report?,” Proc. 8th
ACM/IEEE Int’l Symp. Empir. Softw. Eng. and Measurement,
pp.26:1-26:10, Sept. 2014.

[3] M.R. Karim, A. Thara, X. Yang, H. lida, and K. Matsumoto, “Un-
derstanding key features of high-impact bug reports,” Proc. 8th Int’]
Workshop Empir. Softw. Eng. in Practice, pp.53-58, March 2017.

[4] S.L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” Proc. IEEE 18th Int’l Conf.
Program Comprehension, pp.156—159, June 2010.

[5] H. Schmid, “Tree Tagger.” http://www.cis.uni-muenchen.de/
“schmid/tools/TreeTagger/.

[6] Y. Tian and D. Lo, “A comparative study on the effectiveness of
part-of-speech tagging techniques on bug reports,” Proc. IEEE 22nd
Int’l Conf. Softw. Analysis, Evolution, and Reeng., pp.570-574,
March 2015.

[7] M.H. Halstead, Elements of Software Science, Elsevier, New York,
1977.

[8] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker,
“An empirical study of identifier splitting techniques,” Empir. Softw.
Eng., vol.19, no.6, pp.1754-1780, Dec. 2014.

[9] D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from ab-
breviated identifiers,” Proc. 7th IEEE Int’l Working Conf. Source
Code Analysis and Manipulation, pp.213-222, Sept. 2007.

[10] T. Hofmann, “Probabilistic latent semantic indexing,” Proc. 22nd
Annual Int’l ACM SIGIR Conf. Research and Development in Inf.
Retrieval, pp.50-57, Aug. 1999.

[11] D.M. Blei, “Probabilistic topic models,” Commun. ACM, vol.55,
no.4, pp.77-84, April 2012.

http://dx.doi.org/10.1109/tse.2010.63
http://dx.doi.org/10.1145/2652524.2652541
http://dx.doi.org/10.1109/iwesep.2017.17
http://dx.doi.org/10.1109/icpc.2010.29
http://dx.doi.org/10.1109/saner.2015.7081879
http://dx.doi.org/10.1007/s10664-013-9261-0
http://dx.doi.org/10.1109/scam.2007.4362915
http://dx.doi.org/10.1145/312624.312649
http://dx.doi.org/10.1145/2133806.2133826

