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SUMMARY Cohesion is an important software attribute, and it is one
of significant criteria for assessing object-oriented software quality. Al-
though several metrics for measuring cohesion have been proposed, there
is an aspect which has not been supported by those existing metrics, that
is “cohesive-part size.” This paper proposes a new metric focusing on
“cohesive-part size,” and evaluates it in both of qualitative and quantita-
tive ways, with a mathematical framework and an experiment measuring
some Java classes, respectively. Through those evaluations, the proposed
metric is showed to be a reasonable metric, and not redundant one. It can
collaborate with other existing metrics in measuring class cohesion, and
will contribute to more accurate measurement.
key words: object-oriented software, metrics, cohesion, mathematical
framework, correlation analysis

1. Introduction

Cohesion is one of important attributes for software mod-
ule, representing the degree to which its components are
functionally connected within the module [1]–[3]. This at-
tribute could be applied to object-oriented software, where
a class corresponds to a module, and its attributes and meth-
ods correspond to the module components. In general, high
level cohesion may lead to high maintainability, reusability
and reliability [4], [5], so that class cohesion would be one
of important criteria for assessing object-oriented software
quality.

For measuring class cohesion, several metrics have
been proposed, such as “Lack of Cohesion in Meth-
ods (LCOM)” [6]–[10], “Information flow-based Cohesion
(ICH)” [11], “Tight Class Cohesion (TCC)” and “Loose
Class Cohesion (LCC)” [12]. These metrics are mainly
based on “the number of sets of connected methods,” or
“the density of method-connections/attribute-accesses” in a
class. However there is an aspect of cohesion which has
not been supported by the above metrics. That is “size of
cohesive-part” in a class, in other words, “extent of asso-
ciations among methods” through attribute-accesses and/or
method-invocations in a class. In order to support such lack-
ing aspect, and to contribute more accurate measurement of
cohesion, this paper proposes a new cohesion metric focus-
ing on cohesive-part size, and evaluates it in both of qualita-
tive and quantitative ways.
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The rest of this paper is organized as follows. Section
2 briefly describes the existing eight metrics for measuring
class cohesion. Section 3 presents a new cohesion metric
focusing on cohesive-part size, and Sect. 4 evaluates it in
both of qualitative and quantitative ways. Section 5 gives
our conclusions and future works.

2. Existing Class Cohesion Metrics

Several metrics are proposed in order to measure cohesion
of object-classes [6]–[12]. This section presents some brief
descriptions of those existing metrics. See the literature [5]
for their detailed discussion.

2.1 Lack of Cohesion in Methods (LCOM)

“Lack of COhesion in Methods” (LCOM) is a well-known
class cohesion metric which quantifies poorness of cohe-
sion. The higher value represents the lower cohesion, and
vice versa. LCOM has thus far been discussed by several
researchers [6]–[10]. Through their works, there are the fol-
lowing five different types of LCOM. These metrics have
studied on usefulness as predictors or indicators of mainte-
nance effort [13], fault-proneness [14] and so on.

2.1.1 LCOM by Chidamber and Kemerer

The original LCOM is defined by Chidamber and Ke-
merer [6]. Their approach is based on whether the each pair
of methods are sharing an attribute or not in a class. Those
attribute-sharing relationships mean that different methods
are accessing to the same attribute. Chidamber and Kemerer
define LCOM as the number of method-pairs which are not
sharing any attributes. LCOM value represents a weakness
of functional connections among methods in a class. For the
sake of convenience, we will call the metric “LCOM1.”

Here is a formal definition of LCOM1.

Definition 1 (LCOM1):
Given a class C. Let M be the set of all methods in C, and A
be the set of all attributes in C. LCOM1 value of C is defined
as LCOM1(C) = |P|, where

P =
{
{m1,m2} | m1,m2 ∈ M,

�a ∈ A s.t. both of m1 and m2 access to a
}
.

�
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In the literature [7], Chidamber and Kemerer propose
another definition of LCOM. We will call it “LCOM2.”
LCOM2 takes into account the following two different fac-
tors : (1) the number of method-pairs which are “not shar-
ing” any attributes, and (2) the number of method-pairs
which are “sharing” an attribute. The above two factors have
complementary meanings each other. The former is a weak-
ening factor for cohesion, while the latter is a strengthening
factor for one. LCOM2 combines those factors.

The following is a formal definition of LCOM2.

Definition 2 (LCOM2):
Given a class C. Let M be the set of all methods in C, and A
be the set of all attributes in C. LCOM2 value of C is defined
as follows :

LCOM2(C) =

{ |P| − |Q|, if |P| > |Q| ;
0, otherwise.

where P is the set described in Def. 1, and

Q =
{
{m1,m2} | m1,m2 ∈ M,

∃a ∈ A s.t. both of m1 and m2 access to a
}
.

�

2.1.2 LCOM by Hitz and Montazeri

Hitz and Montazeri propose a different LCOM [8] using the
graph theory. Their approach is also based on the above
attribute-sharing relationships, and those relationships are
represented by an undirected graph. Now a class corre-
sponds to an undirected graph, where each vertex repre-
sents each method, and each edge means each attribute-
sharing relationship. Hitz and Montazeri define LCOM as
the number of “connected components† [15]” in the undi-
rected graph. We will call it “LCOM3.” LCOM3 value indi-
cates the number of disjoint sets of methods in terms of the
attribute-sharing relationship.

Here is a formal definition of LCOM3.

Definition 3 (LCOM3):
Given a class C. Let M be the set of all methods in C, and
A be the set of all attributes in C. Consider an undirected
graph GC = (V, E) with V = M and

E =
{
{m1,m2} | m1,m2 ∈ M,

∃a ∈ A s.t. both of m1 and m2 access to a
}
.

LCOM3 value of C is defined as LCOM3(C) = k(GC), where
k(GC) is the number of connected components in GC . �

Hitz and Montazeri also discuss some effects of
“access-methods” upon LCOM values [9]. Access-methods
are methods to provide reading/writing-accesses to at-
tributes. These methods are sometimes called “accessors”
or “getters and setters.” When two or more methods access
to an attribute via “access-methods”, we have no attribute-
sharing relationships, because the above attribute-sharing

relationships are based on “direct” accesses to attributes by
methods. Hitz and Montazeri propose another LCOM tak-
ing into account such accesses via “access-methods.” We
will call it “LCOM4.”

The following is a formal definition of LCOM4.

Definition 4 (LCOM4):
Given a class C. Let M be the set of all methods in C, and
A be the set of all attributes in C. Consider an undirected
graph GC = (V, E) with V = M and

E =
{
{m1,m2} | m1,m2 ∈ M,

(∃a ∈ A s.t. both of m1 and m2 access to a)

or (m1 invokes m2)
}
.

LCOM4 value of C is defined as LCOM4(C) = k(GC), where
k(GC) is the number of connected components in GC . �

2.1.3 LCOM by Henderson-Sellers

Henderson-Sellers proposes LCOM in a different way [10].
We will call it “LCOM5.” LCOM5 value is characterized
by the following two cases: (i) if each method accesses to
“all” attributes, the LCOM5 value is 0; (ii) if each method
accesses to “only one” attribute, the LCOM5 value is 1. The
case (i) means the most cohesive class, while the case (ii)
means a less cohesive one. LCOM5 represents cohesion-
levels using these two cases as benchmarks.

Here is a formal definition of LCOM5.

Definition 5 (LCOM5):
Given a class C. Let M be the set of all methods in C, and A
be the set of all attributes in C. For each a ∈ A, let µ(a) be
the number of methods accessing to the attribute a.

LCOM5 value of C is defined as follows :

LCOM5(C) =
1

|M| − 1

|M| − 1
|A|

∑
a∈A
µ(a)

 .
�

2.2 Information Flow Based Cohesion (ICH)

Lee et al. propose a cohesion metric based on information
flows between methods [11]. The approach focuses on the
number of method-invocations weighted by the number of
their parameters. Using the number of method parameters,
the metric takes into account a strongness of link between
methods. The metric is called “Information flow based Co-
Hesion (ICH).”

The following is a formal definition of ICH.

Definition 6 (ICH):
Given a class C. Let M be the set of all methods in C. For
m1, m2 ∈ M, let ν(m1,m2) be the number of invocations of
m2 by m1, and π(m2) be the number of m2’s parameters.

†A connected component is a maximal sub graph in which all
vertexes are reachable each other.
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Table 1 Summary of existing class cohesion metrics.

metric summary

LCOM1 number of method-pairs which do not share any attributes.
LCOM2 LCOM1 − (the number of method-pairs which share an attribute).
LCOM3 number of method-sets in which the methods are connected in terms of attribute-sharing.
LCOM4 revised version of LCOM3 considering indirect attribute-sharing via access-method.
LCOM5 density of accesses to attributes by methods.

ICH number of method-invocations weighted by the number of method parameters.
TCC density of attribute-sharing relationships among public methods.
LCC density of relationships among public methods,

where the relationships are in the transitive closure of attribute-sharing relationships.

ICH value of C is defined as follows :

ICH(C) =
∑

m1∈M

∑
m2∈M

(1 + π(m2)) · ν(m1,m2).

�

2.3 Tight Class Cohesion (TCC) and Loose Class Cohe-
sion (LCC)

Bieman and Kang propose a couple of class cohesion
metrics which are called “Tight Class Cohesion (TCC)”
and “Loose Class Cohesion (LCC)” [12]. TCC represents
a density of attribute-sharing relationships between pub-
lic methods in a class. LCC represents a density of ex-
tended attribute-sharing relationships between public meth-
ods, where those extended relationships are constructed by
the transitive closure of the above attribute-sharing relation-
ships. These metrics have studied on usefulness as indica-
tors of reusability for object classes [12].

We present definitions of TCC and LCC.

Definition 7 (TCC, LCC):
Given a class C. Let Mp be the set of all public methods in
C, and A be the set of all attributes in C.

When a method m uses an attribute a in the method
body, we say “m directly accesses to a.” If a method m in-
vokes another method m1, m1 invokes m2, . . ., mn−1 invokes
mn (n ≥ 1) and mn directly accesses to an attribute a, then
we say “m indirectly accesses to a.” Now consider the fol-
lowing two sets :

T =
{
{m,m′} | m,m′ ∈ Mp,

∃a ∈ A s.t. m and m′
directly or indirectly access to a

}
,

and

L =
{
{m,m′} | ∃{mi ∈ Mp}ki=1 s.t.

m = m1, m′ = mk, k > 1,
{m j,m j+1} ∈ T ( j = 1, . . . , k − 1)

}
.

TCC and LCC values of C are defined as follows :

TCC(C) =
|T |( |Mp|
2

) , LCC(C) =
|T | + |L|( |Mp|

2

) ,

where

( |Mp|
2

)
= |Mp|(|Mp| − 1)/2. �

3. A New Class Cohesion Metric

3.1 Motivation

We have introduced eight metrics : LCOM1∼5, ICH, TCC
and LCC. Table 1 shows a summary of them. LCOM1∼4
are based on the numbers of pairs/sets of methods connected
by attribute-sharing relationships. LCOM5 presents a den-
sity of accesses to attributes by methods. ICH shows the
number of method-invocations weighted by the number of
method parameters. TCC and LCC are based on densities
of attribute-sharing relationships among methods. However,
they do not consider “extents” of attribute-sharing relation-
ships among methods, in other words, “sizes of cohesive-
parts” in a class. Since the higher cohesive class would have
the lager cohesive-parts, such aspect is also one of the cohe-
sion aspects to be measured. This section proposes a cohe-
sion metric focusing on cohesive-part size.

3.2 Preliminaries

Preliminary to the development of our metric, we define sev-
eral underlying notions.

At first, we define a mathematical relation between
methods through method-invocations.

Definition 8 (binary relation on methods):
Given a class. Let M be the set of all methods in the class.
We define a binary relation S as follows :

S =
{

(m1,m2) | m1,m2 ∈ M, m1 invokes m2

}
.

Now we can obtain the reflective transitive closure S ∗ as
follows :

S ∗ =

 (m1,m2)
∣∣∣ m1,m2 ∈ M,

(m1 = m2) ∨

∨
n≥1

m1 S nm2


,

where S n = S n−1 ◦ S (n ≥ 2), and S 1 = S ; “◦” indicates the
composition of relations [16]. �

S ∗ represents directly or indirectly method-invocations.
Now we define a relationship between a method and an

attribute.
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Definition 9 (accesses to attributes by methods):
Given a class. Let M be the set of all methods, and A be the
set of all attributes, in the class. For any m ∈ M, a ∈ A, we
define a predicate ac as follows :

ac(m, a)
de f⇐⇒

∃m′ ∈ M s.t.
[

(m S ∗m′) ∧ (m′ accesses a)
]
,

where an “access” means a direct access to an attribute by a
method. �

The predicate ac considers not only direct accesses to
attributes but also indirect accesses to ones via access-
methods. Using the predicate, we introduce a graph model.

Definition 10 (association-graph):
Given a class. Let M be the set of all methods, and A be the
set of all attributes, in the class. We define the association-
graph as an undirected graph Ga = (V, E), where V = M
and

E =
{
{m1,m2} | m1,m2 ∈ M, m1 � m2,

∃a ∈ A s.t.

ac(m1, a) ∧ ac(m2, a)
}
. (1)

�

When two or more methods access to one attribute, those
methods seem to share the attribute. The association-graph
Ga represents those attribute-sharing relationships between
methods in a class. In Ga, if there is a path from a method
to another method, those methods share an attribute directly
or indirectly. Those relationships correspond to the reacha-
bilities in the graph.

Definition 11 (set of reachable methods):
Given a class. Let M be the set of all methods, and A be the
set of all attributes, in the class. Consider the association-
graph Ga = (V, E), where V = M and E is described in
Eq. (1).

For each method mi ∈ M (i = 1, . . . , |M|), define the set
of reachable methods, Ra(mi), as follows :

Ra(mi) =
{

m j | ∃mk1 , . . . ,mkp ∈ M s.t.

(mi = mk1 ) ∧ (m j = mkp ) ∧
{mkt ,mkt+1} ∈ E

(t = 1, . . . , p − 1)
}
. (2)

�

Ra(mi) is the set of all methods which are reachable by mi

in Ga. The methods belonging to Ra(mi) seem to be associ-
ated with mi through their attribute-sharing relationships. In
other words, those methods are in the “chain of links” where
methods are directly or indirectly linked through attribute-
sharing relationships. So the methods are functionally con-
nected by the chain of links, and we should not decompose
the set into two or more smaller sets. Ra(mi) seems to form
a cohesive-part of the class including mi, and |Ra(mi)| is in-
volved in the extent of attribute-sharing relationships.

3.3 Definition

Using the association-graph and the sets of reachable meth-
ods, we propose a metric for measuring class cohesion,
which is called “Association-Extent based Class Cohesion
(AECC).”

Definition 12 (AECC):
Given a class C. Let M be the set of all methods, and A be
the set of all attributes, in C. Consider the association-graph
Ga = (V, E) for C, where V = M and E is in Eq. (1). For
each method m ∈ M, let Ra(m) be the set of all methods
which are reachable by m in Ga (see Eq. (2)).

Define Association-Extent based Class Cohesion
(AECC) value of C as follows :

AECC(C) =


max
m∈M

[ |Ra(m)|
|M| − 1

]
, (|M| > 1),

0, (|M| = 1).
(3)

�

3.4 Meanings of the Proposed Metric

For each method m, |Ra(m)|/(|M|−1) denotes the percentage
of methods to be reachable by m in the association-graph;
“−1” in the numerator represents excluding m itself from the
percentage calculation. AECC is the maximum percentage
for all methods in the class. Since Ra(m) forms a cohesive-
part in which all methods are directly or indirectly linked
through attribute-sharing relationships, |Ra(m)|/(|M|−1) rep-
resents the relative size of the cohesive-part including m, in
other words, |Ra(m)|/(|M|−1) denotes the extent of attribute-
sharing relationships. That is, AECC quantifies the maxi-
mum extent of attribute-sharing relationships among meth-
ods in the class. Since the higher cohesive class would have
the lager cohesive-parts, AECC represents an aspect of class
cohesion.

Although AECC is similar to TCC and LCC, AECC is
essentially different from them. TCC and LCC calculate
“densities” of attribute-sharing relationships among meth-
ods. However, AECC represents the maximum “extent” of
attribute-sharing relationships. While the “density” is based
on the number of attribute-sharing relationships, the “ex-
tent” corresponds to the connectivity among methods via
attribute-sharing relationships.

3.5 Examples

We now present a simple example of calculating AECC
value. Consider a class shown in Fig. 1, who has seven
methods M = {m1, . . . ,m7} and four attributes A =

{a1, . . . , a4}. Fig. 2 shows its structure†.
Here the following ten predicates are true :

ac(m1, a1), ac(m1, a2), ac(m2, a1), ac(m3, a2),
†For the sake of simplicity, we omit the existence of the super

class “java.lang.Object.”
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public class Example1
{

public int m1(){ return a1 − a2; }
public void m2(int arg){ a1 = arg; }
public void m3(int arg){ a2 = arg; }
public void m4(int arg){ a3 = arg; m5(arg); }
public void m5(int arg){ a4 = arg; }
public int m6(){ return a3 + m7(); }
public int m7(){ return a4; }
private int a1, a2, a3, a4;

}
Fig. 1 An example of class written in Java.

Fig. 2 An example of class model (1).

Fig. 3 association-graph for Fig. 2.

ac(m4, a3), ac(m4, a4), ac(m5, a4), ac(m6, a3),
ac(m6, a4) and ac(m7, a4).
Then we can consider the association-graph Ga shown in
Fig. 3. From Fig. 3, we obtain |Ra(m1)| = |Ra(m2)| = |Ra(m3)|
= 2 and |Ra(m4)| = |Ra(m5)| = |Ra(m6)| = |Ra(m7)| = 3. Thus
AECC value of this class is calculated as follows :

AECC = max
m∈M

[ |Ra(m)|
|M| − 1

]

= max

[
2

7 − 1
,

3
7 − 1

]

= 0.5.

This result means that the maximum cohesive-part of the
class makes up 50% of the whole.

We next consider another example, and compare with
the existing eight metrics described in Sect. 2. Fig. 4 shows
another example of class which is made by modifying the
class of Fig. 2 where m4 invokes m2 instead of m5. In Fig. 4,
all methods are connected through attribute-accesses or
method-invocations, while Fig. 2 has two separated groups
{m1,m2,m3} and {m4,m5,m6,m7}. So the class shown in
Fig. 4 would intuitively be more cohesive than one in Fig. 2.
Table 2 shows metric values of the existing eight metrics

Fig. 4 An example of class model (2).

Table 2 Metric values of the classes in Fig. 2 and Fig. 4.

metric Fig. 2 Fig. 4 Fig. 2→ Fig. 4

LCOM1 17 17 no change
LCOM2 13 13 no change
LCOM3 3 3 no change
LCOM4 2 1 up
LCOM5 0.833 0.833 no change

ICH 3 3 no change
TCC 0.429 0.333 down
LCC 0.429 1.0 up

AECC 0.5 1.0 up

(see Table 1) and AECC† for the classes shown in Fig. 2
and 4, and describes their changes in cohesion level†† from
Fig. 2 to Fig. 4. ( For our calculation of ICH, we assume m4

invokes m2 once in the body. )
In this case, LCOM4, TCC, LCC and AECC could be

sensible to the difference between Fig. 2 and Fig. 4.
LCOM4 represents the number of cohesive-parts in the

class, but it could not represent their sizes, so that LCOM4
essentially differs from AECC.

TCC shows an evaluation which is counter to our intu-
ition “Fig. 4 should have higher cohesion than Fig. 2.” The
reason TCC gives such unusual evaluation is that the total
number of attribute-sharing relationships decreases from 9
(in Fig. 2) to 7 (in Fig. 4), i.e., the density of relationships
decreases while the extent of relationships becomes wider
through the change. It is an essentially different point be-
tween TCC and AECC. Although LCC is also based on the
density of relationships, LCC uses the transitive closure of
attribute-sharing relationships, so that it could evaluate the
difference successfully.

LCC has a similar tendency to AECC in the above
examples. In order to show a difference in viewpoint be-
tween LCC and AECC, we consider additional two exam-
ples shown in Fig. 5 and Fig. 6.

Table 3 shows LCC and AECC values in the cases of
Fig. 5 and Fig. 6.

AECC represents a difference between Fig. 5 and
Fig. 6, since the maximum extent of attribute-sharing re-
lationships has changed through those examples : Fig. 5

†For the lack of space, we omit their calculation pro-
cesses. Although we ignore the existence of the super class
“java.lang.Object,” we have no inconsistency in comparisons of
those metrics.
††Notice that LCOM1 ∼ 5 are “reverse” metrics in which the

higher values mean the lower cohesion.
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Fig. 5 An example of class model (3).

Fig. 6 An example of class model (4).

Table 3 LCC value and AECC value of the classes in Fig. 5 and Fig. 6.

metric Fig. 5 Fig. 6 Fig. 5→ Fig. 6

LCC 0.267 0.267 no change
AECC 0.444 0.333 down

has {m1,m2,m3,m4,m5} as the largest method-set in which
the methods are connected by some attribute-sharing rela-
tionships, but Fig. 6 has smaller set {m1,m2,m3,m4} as the
largest one. However LCC has no change through those
two examples, because the total number of relationships
(on the transitive closure of attribute-sharing relationships)
stays constant between Fig. 5 and Fig. 6. (While m5 has the
relationships with m1, m2, m3 and m4 in Fig. 5, m5 loses
the relationships with them in Fig. 6. However m5 gets the
new relationships with m6 and m7; besides m10 obtains the
new relationships with m8 and m9 in Fig. 6.) Thus the den-
sity of relationships has no change. The above comparison
would show a major difference in viewpoint between LCC
and AECC. Moreover LCC does not take into account “non-
public” methods while AECC uses all methods in the evalu-
ation; it is also a difference between LCC and AECC.

Although the above examples are just simple examples,
they might show that AECC supports an aspect of cohesion
which has not been considered by the existing eight metrics.
We will evaluate it in both of qualitative and quantitative
ways in the next section.

4. Evaluations

This section presents evaluations of our AECC in the both
of qualitative and quantitative ways. The qualitative eval-
uation will describe that AECC satisfies mathematical nec-
essary conditions of cohesion metrics, based on a mathe-
matical framework. The quantitative evaluation will show
that AECC gives the metric values without depending on the
other existing metrics described in Sect. 2.

4.1 Qualitative Evaluation

4.1.1 Mathematical Framework

Briand, Morasca and Basili propose a mathematical frame-
work (BMB framework) including some properties to be
satisfied by several types of software metrics [17]. The sup-
ported types of metrics are “size,” “length,” “complexity,”
“coupling” and “cohesion.” Note that BMB framework pro-
vides necessary conditions of software metrics, because the
framework does not include the all properties to be satisfied
by those metrics. We will use it for checking some mathe-
matical necessary conditions of metrics.

In BMB framework, a software is represented by a
graph model in which vertexes are corresponding to the
components, and edges are corresponding to coupling re-
lationships between the components. BMB framework sug-
gests the following four properties to be satisfied by cohe-
sion metrics. For the sake of convenience, we will write the
cohesion of a class C as “cohe(C).”

Property 1 :
For any class C, cohe(C) ∈ [0,max] , where max is a
positive constant number.

Property 2 :
Let G = (V, E) be the graph model of a class C, where
V and E are the vertex set and the edge set, respectively.
Then E = φ =⇒ cohe(C) = 0 .

Property 3 :
Consider two classes C and C′ whose models are G =
(V, E) and G′ = (V, E′), respectively. Then E ⊆ E′ =⇒
cohe(C) ≤ cohe(C′) .

Property 4 :
Consider two classes C1 and C2 whose models are
G1 = (V1, E1) and G2 = (V2, E2), respectively. Let C12

be a class whose model is G12 = (V1 ∪ V2, E1 ∪ E2),
i.e., C12 is composed of C1 and C2. Then

(
∀{u, v} ∈ E1 ∪ E2 [u ∈ V1 ∩ V2 ⇐⇒ v ∈ V1 ∩ V2]

)
=⇒ max[ cohe(C1), cohe(C2) ] ≥ cohe(C12) .

�

Property 1 represents a nonnegativity and a normaliza-
tion. The nonnegativity is a basic property to be satisfied
by any of mathematical measures [18]. The normalization
brings us meaningful comparisons between different met-
rics.

Property 2 is also a basic property of mathematical
measures : the measure of empty set is null. In our context,
if there is no relationships among components in a class,
then the class cohesion is null.

Property 3 corresponds to a monotonicity. When some
relationships between components are added in a class,
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Table 4 Metric values of Java classes.

class LCOM1 LCOM2 LCOM3 LCOM4 LCOM5 TCC LCC ICH AECC

Math 526 524 31 29 1.01 0.0383 0.0383 5 0.625
Throwable 28 28 8 3 1.10 0.143 0.0952 10 0.286

String 1107 888 31 17 0.971 0.194 0.122 54 0.725
SecurityManager 1081 1081 47 10 1.01 0 0 82 0

ClassLoader 1307 1288 44 14 1.01 0.0216 0.0173 87 0.157
Package 204 198 16 10 0.995 0.0221 0 14 0.1

StringBuffer 640 539 22 7 0.908 0.579 0.0254 66 0.789
System 463 430 24 16 0.974 0.0260 0 21 0.129
Thread 887 871 33 11 1.01 0.0189 0.0170 50 0.310

ThreadGroup 415 334 13 5 0.958 0.108 0.171 36 0.871
BasicPermission 21 21 7 5 1.08 0 0 10 0.167

Arrays 4641 4626 92 19 0.979 0.00328 0 674 0.0313
Integer 269 238 16 9 0.984 0.0217 0 22 0.125
Date 507 486 24 5 0.994 0.296 0.257 50 0.656

Component 29493 28851 155 72 0.998 0.0928 0.0303 339 0.837
File 707 424 18 6 0.959 0.206 0.165 24 0.773

FileDescriptor 3 3 3 3 1.38 0 0 0 0
InputStream 28 28 8 7 1.07 0 0 10 0
Container 3834 3752 60 30 0.990 0.0648 0.0244 179 0.455

Writer 5 4 3 3 1.11 0 0 16 0
StringWriter 21 6 4 2 0.688 0 0 5 0

Panel 6 6 4 4 1.22 0 0 6 0
Applet 304 283 20 12 0.933 0.277 0.166 27 0.56

BigInteger 3791 3577 53 13 0.994 0.084 0.0559 267 0.697
Socket 63 0 4 4 0.568 0 0 0 0

ServerSocket 15 0 3 2 0.625 0.0714 0.0714 2 0.25
DatagramPacket 46 37 4 4 0.9 0.0444 0.0444 2 0.2
FileOutputStream 45 45 10 7 1 0 0 10 0

EventObject 0 0 1 1 0 0 0 2 0
Collections 22376 20442 115 97 0.993 0.000209 0.000209 58 0.0227

cohesion-level dose not go down.
Property 4 considers a situation combining a class with

another class, where they have no common component.
Such situation means that two classes cohabit, but they have
no relationship each other. Property 4 says that such com-
bined class does not have a greater cohesion than the maxi-
mum of the original classes’ cohesion.

4.1.2 Results

AECC satisfies the above four properties (see Appendix for
their proofs), and be a metric holding necessary conditions
of cohesion metric. We will consider AECC to be one of
reasonable class cohesion metrics, and compare it with the
other existing metrics in the following section.

4.2 Quantitative Evaluation

We have seen AECC holds the above necessary conditions
of cohesion metric. We next present some measurement data
of practical object classes, and evaluate AECC using those
data, especially we will show that AECC measures classes
without depending on the other existing metrics, in other
words, it is not redundant metric.

Table 4 presents metric values of Java classes which are
selected from “Sun J2SE SDK version 1.3.1” randomly.

Unfortunately any sufficient conditions of cohesion
metric have never been found nor proposed. Since we have

no sufficient condition, it is difficult to present an objec-
tive and reliable discussion on the validity of AECC as a
cohesion metric, even if we use many experimental data.
(While highly reusable classes such as String, StringBuffer
and so on, seem to have relative high value of AECC, they
can not be any grounds for the validity as cohesion metric;
Rather they would be materials for investigating a useful-
ness of AECC.) So we have checked AECC by mathematical
properties of cohesion metric in the above. As a quantita-
tive evaluation of AECC, we analyze dependencies between
metrics using experimental data shown in Table 4, and we
show AECC is not redundant metric. For example, we now
see three classes shown in the head of Table 4. Although the
model of AECC is similar to the models of TCC and LCC,
those experimental data show a different tendency between
AECC and TCC/LCC (e.g., see Fig. 7). In order to show
such actual differences in tendency between metrics, we use
the following correlation analysis.

4.2.1 Correlation Coefficient

When some different software metrics measure a software
attribute, they have to capture different aspects of the soft-
ware attribute independently. In other words, metrics should
not depend on each other for providing their measurements.
If there is a strong correlation [19] between two metrics, one
of them is a redundant metric. We can explore such relation-
ships between metrics by calculating their correlation coef-
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Fig. 7 A comparison of AECC and TCC/LCC.

ficients.
The following is a brief description of calculating cor-

relation coefficients for verifying metrics.
Given two metrics and N sample data(software). Mea-

sure each of sample data using those metrics, then obtain
2-dimensional vector xi = (xi1, xi2) for each data (i =
1, . . . ,N), where xi1 and xi2 are the metric values for the i-th
sample data, respectively. Now the correlation coefficient r
is calculated as follows :

r =

∑N
i=1(xi1 − x1)(xi2 − x2)√ ∑N

i=1(xi1 − x1)2
∑N

i=1(xi2 − x2)2 ,

where x1 = (
∑N

i=1 xi1)/N and x2 = (
∑N

i=1 xi2)/N.
The higher value of |r| means the stronger correlation

between two metrics. Now prepare a threshold value τ for
|r|. If |r| ≥ τ, we will consider those two metrics are depen-
dent on each other, and one of them is a redundant metric.

4.2.2 Experiments

We perform the following experiments in order to show that
AECC measures cohesion without depending on the other
existing metrics (see Sect. 2), in other words, AECC is not
redundant metric.

Prepare a set of sample data (Java classes). Measure
cohesion using the above eight metrics and AECC. For each
pair of AECC and the others, (i.e., for the following eight
pairs: {AECC,LCOM1}, {AECC,LCOM2}, {AECC,LCOM3},
{AECC,LCOM4}, {AECC,LCOM5}, {AECC, ICH}, {AECC,TCC},
and {AECC,LCC}, ) calculate their correlation coefficients.

We now use τ = 0.8 [19]. If there is a correlation coef-
ficient is grater than or equal to τ, we will regard AECC as
a redundant metric. Otherwise, we will consider that AECC
can provide its measurements without depending on any of
the other existing metrics.

Now our set of sample data (Java classes) is shown in
Table 4.

4.2.3 Results

Tables 5 shows the correlation coefficients calculated in the

Table 5 Correlation coefficients with AECC.

metrics correlation coefficients : r

LCOM1 0.202744
LCOM2 0.207895
LCOM3 0.259502
LCOM4 0.152871
LCOM5 0.085906

ICH 0.147297
TCC 0.695496
LCC 0.697812

above experiment†. From this table, we have no metric
whose correlation coefficient with AECC is grater than or
equal to τ(= 0.8), i.e., no metric who has a strong correla-
tion with AECC :

• LCOM1∼LCOM5 and ICH have some low correlation
coefficients (|r| = 0.085906 ∼ 0.259502).
• TCC and LCC have some middle-level correlations

(|r| = 0.695496, 0.697812), but not strong correla-
tions. The reason they have such correlations is be-
cause their underlying model is similar to AECC’s
model : The models of TCC and LCC focus on “den-
sities” of attribute-sharing relationships while AECC’s
model focuses on “extents” of those relationships.

Thus AECC is not redundant metric, and will be an im-
portant one. It measures an aspect of cohesion which is not
supported by the other existing eight metrics. AECC can
collaborate with those existing metrics in measuring class
cohesion, and will contribute to more accurate measure-
ment.

5. Conclusion and Future Work

A class cohesion metric, “Association-Extent based Class
Cohesion (AECC),” has been proposed in this paper.
AECC measures class cohesion using the maximum size of
cohesive-parts, which is an aspect has not been supported by
the other existing metrics. AECC has been evaluated in both
of qualitative and quantitative ways : it has been showed that

• AECC satisfies mathematical conditions of cohesion
metrics described in BMB framework,
• AECC presents cohesion values without depending on

any of the other existing metrics : LCOM1∼5, ICH,
TCC and LCC.

Therefore, AECC is a reasonable class cohesion metric, and
not redundant metric. It can collaborate with the other exist-
ing metrics in measuring class cohesion, and will contribute
to more accurate measurement.

Our future works include investigations into
(1) practical usefulness of AECC and other metrics, such as
predictors of software maintenance cost using class cohe-
sion metrics,
(2) relationships between reusability of software compo-
nents and their cohesion, and so on.

†For the lack of space, we omit the metric values for each of
sample data.
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Appendix: Proofs

The followings are the proofs of that AECC satisfies the four
properties of cohesion metrics described in Sect. 4.1.1 [20].
In these proofs, we will consider the association-graph to be
the graph model of a class.

Proof for Property 1 :
Given a class C. Let M be the set of all methods in C.

(i) Case |M| = 1 :
From Eq. (3), we obtain AECC(C) = 0.

(ii) Case |M| > 1 :
For each m ∈ M, let Ra(m) be the set of methods

reachable by m (see Eq. (2)). From the definition, we have
0 ≤ |Ra(m)| ≤ |M| − 1, for each m ∈ M. Thus, from Eq. (3),
we obtain 0 ≤ AECC(C) ≤ 1.

Therefore, we can get AECC(C) ∈ [0, 1], for any class
C. �

Proof for Property 2 :
Given a class C. Let M be the set of all methods in C,

and Ga = (V, E) be the association-graph of C.
(i) Case |M| = 1 :

From Eq. (3), we obtain AECC(C) = 0.
(ii) Case |M| > 1 :

We assume E = φ. For each m ∈ M, let Ra(m) be the
set of methods reachable by m (see Eq. (2)). Since E = φ,
we have |Ra(m)| = 0 for each m ∈ M. Thus, we obtain
AECC(C) = 0.

Therefore, we can get AECC(C) = 0 for any class C
such that E = φ. �

Proof for Property 3 :
Given a class C. Let M be the set of all methods in C.

(i) Case |M| = 1 :
Since we have only one vertex (method) in the graph,

we could not add any edges to the association-graph of C,
and each vertex is not allowed having a self-loop (an edge
from a vertex to the same vertex). Thus, the class C′, de-
scribed in the property 3, must be the same as C. Therefore,
we can obtain AECC(C) = AECC(C′).
(ii) Case |M| > 1 :

Let Ga(C) = (V,E) be the association-graph of C.
Now we can consider a class C′ whose association-graph
is G′a(C′) = (V,E′) where E ⊆ E′. For each m ∈ M, let
Ra(m) and R′a(m) be the sets of reachable methods by m in
Ga and G′a, respectively (see Eq. (2)).

Since E ⊆ E′, we obtain Ra(m) ⊆ R′a(m), for each m ∈
M. Thus, we have |Ra(m)| ≤ |R′a(m)|, and we get

max
m∈M

[
|Ra(m)|

]
≤ max

m∈M

[
|R′a(m)|

]
,

i.e., AECC(C) ≤ AECC(C′), for each m ∈ M.
Therefore, we can get AECC(C) ≤ AECC(C′), for all

pairs of classes such that E ⊆ E′. �

Proof for Property 4 :
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Given a pair of classes C1 and C2, and consider a
class C12 composed of C1 and C2. Let M1, M2 and M12

(= M1 ∪ M2) be the sets of all methods in C1, C2 and
C12, respectively. Let Ga1 = (V1, E1), Ga2 = (V2, E2) and
Ga12 = (V1 ∪ V2, E1 ∪ E2) be the association-graphs of C1,
C2 and C12, respectively. For each m1 ∈ M1, let Ra1 (m1)
be the set of reachable methods by m1 in Ga1 (see Eq. (2)).
Similarly, let Ra2 (m2) and Ra12(m12) be the sets of reachable
methods by m2 ∈ M2 and m12 ∈ M12, respectively.
(i) Case |M1| = |M2| = 1 :

Since M12 = M1 ∪ M2, we have |M12| = 1. From
Eq. (3), we obtain AECC(C1) = AECC(C2) = AECC(C12) =
0. Thus, we get

max[AECC(C1),AECC(C2)] = AECC(C12).

(ii) Case |M1| > 1 or |M2| > 1 :
This case could be |M1| + |M2| ≥ |M12|, and we put

|M1| + |M2| − |M12| = p (≥ 0).
Let m1,i (i = 1, . . . , |M1|), m2, j ( j = 1, . . . , |M2|) and

m12,k (k = 1, . . . , |M12|) be the methods in C1, C2 and C12,
respectively. Now we put the relations among {m1,i}, {m2, j}
and {m12,k} as follows, without loss of generality :

m12,k =

{
m1,k , (k = 1, . . . , |M1| − p),
m2,k−|M1|+p , (otherwise),

where m2,k−|M1|+p = m1,k (k = |M1| − p, . . . , |M1|).
From the assumption of the property 4, we have

∀{u, v} ∈ E1 ∪ E2 [u ∈ V1 ∩ V2 ⇐⇒ v ∈ V1 ∩ V2]. That
is, Ga12 has no path from a method in C1 to one in C2, vice
versa. Thus we obtain the following equation :

Ra12 (m12,k)

=

{
Ra1(m1,k), (k = 1, . . . , |M1| − p),
Ra2(m2,k−|M1|+p), (otherwise).

Since |M1|, |M2| ≤ |M12|, we obtain

|Ra12 (m12,k)|
|M12| − 1

≤ |Ra1 (m1,k)|
|M1| − 1

, (k = 1, . . . , |M1|),

and

|Ra12 (m12,k)|
|M12| − 1

≤ |Ra2 (m2, j)|
|M2| − 1

,

(k = |M1| − p + 1, . . . , |M12|;
j = k − |M1| + p).

Thereby we get

max
k=1,...,|M1 |

[ |Ra12 (m12,k)|
|M12| − 1

]

≤ max
k=1,...,|M1 |

[ |Ra1 (m1,k)|
|M1| − 1

]
= AECC(C1),

and

max
k=|M1 |−p+1,...,|M12|

[ |Ra12(m12,k)|
|M12| − 1

]

≤ max
k=|M1 |−p+1,...,|M12 |

( j=1,...,|M2|)

[ |Ra2 (m2, j)|
|M2| − 1

]
= AECC(C2).

Therefore, we get

AECC(C12)

= max
k=1,...,|M12|

[ |Ra12(m12,k)|
|M12| − 1

]

= max

{
max

k=1,...,|M1|

[ |Ra12(m12,k)|
|M12| − 1

]
,

max
k=|M1|−p+1,...,|M12|

[ |Ra12(m12,k)|
|M12| − 1

]}

≤ max { AECC(C1), AECC(C2) } ,
for all classes such that ∀{u, v} ∈ E1 ∪ E2 [u ∈ V1 ∩ V2 ⇐⇒
v ∈ V1 ∩ V2]. �
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