
1284
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

LETTER

A Simple Predictive Method for Discriminating Costly Classes
Using Class Size Metric∗

Hirohisa AMAN†a), Member, Naomi MOCHIDUKI†, Nonmember, Hiroyuki YAMADA†, Member,
and Matu-Tarow NODA†, Nonmember

SUMMARY Larger object classes often become more costly classes
in the maintenance phase of object-oriented software. Consequently class
would have to be constructed in a medium or small size. In order to discuss
such desirable size, this paper proposes a simple method for predictively
discriminating costly classes in version-upgrades, using a class size metric,
Stmts. Concretely, a threshold value of class size (in Stmts) is provided
through empirical studies using many Java classes. The threshold value
succeeded as a predictive discriminator for about 73% of the sample Java
classes.
key words: object oriented software, modification effort, prediction, class
size, metrics

1. Introduction

Class size is an important attribute of object-oriented soft-
ware. Larger classes often become more costly classes in
the maintenance phase, since larger ones would need more
time and effort to review, upgrade and/or reconstruct. Con-
sequently class would have to be constructed in a medium
or small size. Eman et al.[1] have discussed the optimal size
of class, and empirically showed faulty classes tend to be
larger than not-faulty classes. We focus on version-upgrades
as well as the number of faults, especially the lines of codes
modified through the upgrades. Version-upgrades can in-
clude not only fault fixings but also software refactorings
and evolutions. Consequently version-upgrades would be
important to more software developers and managers. In
order to discuss an optimal class size in terms of version-
upgrades, we propose a simple method for predictively dis-
criminating the costly classes from the others, using a class
size metric. Concretely, we empirically derive a threshold
value of class size from many version-upgrade cases in Java
classes, and validate it as a predictive discriminator for the
costly classes.

Manuscript received October 8, 2004.
Manuscript revised January 25, 2005.
†The authors are with the Department of Computer Science,

Faculty of Engineering, Ehime University, Matsuyama-shi, 790–
8577 Japan.

∗This paper was presented at the 6th Joint Conf. on
Knowledge-Based Software Eng. (JCKBSE2004), Moscow, Rus-
sian Federation, Aug. 2004.

a) E-mail: aman@cs.ehime-u.ac.jp
DOI: 10.1093/ietisy/e88–d.6.1284

2. Predictive Discrimination of Costly Classes by Class
Size Metric

2.1 Costly Class

To discuss costly classes in not only closed software projects
but also open source software projects, this paper focuses
on the number of source code lines modified through the
version-upgrade, and considers it to be an important factor
of the version-upgrade cost. Formally, let c be a class, and it
has upgraded from the version vi to the next version vi+1; we
represent the older version as cvi , and the newer one as cvi+1 .
Then let d(cvi , cvi+1) be the number of different source code
lines between cvi and cvi+1 , i.e., the modified lines through
the version-upgrade. The different lines contain the changed
lines, added lines and deleted lines, excepting the comment
statements and empty lines. After filtering out the comment
statements in source program, those different lines can be
counted up by the Unix command “diff” with the option
“-cbwB”∗∗. d(cvi , cvi+1 ) would be an important measure of
the version-upgrade cost that went into cvi .

When a class cvi has a large number of different lines
with the next version cvi+1 , we consider cvi to be a costly
class. Formally, we define it as follows.

Definition 1 (costly class; decision parameter α):
Given n version-upgrade cases for many classes, say

{cvi , cvi+1}. Consider a real number α (0 ≤ α ≤ 1), and if
d(cvi , cvi+1) is in the largest �α·n� cases of all version-upgrade
cases∗∗∗, then we define cvi to be a costly class. We will say
such {cvi , cvi+1}’s as “the worst α (%) cases.” �

The parameter α would be empirically decided by soft-
ware managers, to determine their “wrong” version-upgrade
cases. For example, when we have 1234 (= n) version-
upgrade cases and α = 0.05 (5%), we select the largest
62 (= �0.05×1234� = �61.7�) cases corresponding to the
worst 5% cases.

2.2 Class Size Metric

Now we introduce a class size metric for our predictive dis-
crimination of costly classes. Class size is one of the most
∗∗GNU diffutils version 2.8.1.
∗∗∗The ceiling function � · � is used for only making α·n into an

approximate natural number.

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers



LETTER
1285

Fig. 1 Example of two code fragments whose coding styles are differed.

basic object-oriented software attribute, and understandable
for a lot of developers and managers. We believe that soft-
ware quality criteria should be simple for becoming widely
used, so we focus on class size in this paper.

We use the metric “Statements (Stmts)” [2] for measur-
ing class size. Stmts value is the number of executable and
declaration statements in a class. The metric is sensitive to
coding effort, and can provide a coding-style independent
measurement.

We might used other size metrics such as “lines
of codes (LOC) [3],” “number of methods (NM) [4],”
“weighted methods per class (WMC) [5],” and so on. LOC
is also sensitive to coding effort but performs a coding-style
dependent measurement: e.g., two code fragments shown in
Fig. 1 have different coding-styles, and their LOC values are
also differed (the left fragment’s LOC value is 4 and the right
one’s LOC value is 6) but their Stmts values are the same
(both of their Stmts values are 7; these 7 statements contain
1 while-statement, 3 binary-expressions, 1 if-statement, 1
assignment-expression and 1 unary-expression†). Although
NM would perform a coding-style independent measure-
ment, it is weakly sensitive to coding effort since this metric
uses only the number of methods. WMC might also achieve
a coding-style independent measurement and be sensitive to
coding effort. However WMC values depend on weight val-
ues assigned to methods, and there are various ways for as-
signing weight values [7]. It is difficult to decide the way for
assigning weight values to be good at any type of software.
For the above reasons, this study will use Stmts as the size
metric.

We represent the Stmts value of class cvi as Stmts(cvi).
Stmts values can be easily counted up using JavaML [8]
which is a XML representation of Java source program: we
can get Stmts(cvi) value by counting the number of appro-
priate tags, such as “<if>” and “<loop>,” in JavaML corre-
sponding to cvi . For example, Fig. 2 shows a JavaML which
corresponds to both of the code fragments shown in Fig. 1;
those two code fragments are identical in JavaML. We
can find 7 appropriate tags for executable/declaration state-
ments in Fig. 2: “<loop>,” three(3) “<binary-expr>”s,
“<if>,” “<assignment-expr>” and “<unary-expr>.” In
such way, we can get Stmts values. JavaML bring us an ease
of measurement tool development. We developed a Stmts
measurement tool based on JavaML.

2.3 Predictive Discrimination

We propose a concept of threshold value for predictively

Fig. 2 JavaML corresponding to both of the code fragments in Fig. 1.

discriminating the costly classes from the others by Stmts
values.

Definition 2 (threshold value τ):
Consider a natural number τ, and predict as follows:

• If Stmts(cvi) ≥ τ, cvi will be a costly class, i.e., the
version-upgrade {cvi , cvi+1} will be in the worst α cases;
• otherwise, cvi will not be costly class.

�

All version-upgrade cases are classified into four cate-
gories as the contingency table [9] shown in Table 1.

In Table 1, E1 and E2 correspond to the numbers of
cases failed in the prediction by τ. In order to normalize
impact levels of prediction errors E1 and E2, we formulate
the sum of error rates as follows:

ε(τ) =
E1

N1
+

E2

N2
. (1)

Now we find τ such that ε(τ) has the least value, i.e., the
sum of error rates becomes the minimum. Such τ would
be a useful criterion of class size for discriminating costly
classes in object-oriented software development.

The above notations are summarized in Table 2.

†According to the Java language specification [6], these ex-
pressions are called “Expression Statements” which are of exe-
cutable statements.



1286
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

Table 1 Contingency table for version-upgrade cases.

Stmts value
< τ ≥ τ total

worst α cases E1 S 2 N1

others S 1 E2 N2

Table 2 Notations.

notation description

cvi version vi of class c
d(cvi , cvi+1 ) number of different lines between cvi and cvi+1

α decision parameter selecting the worst α(%) cases;
costly classes

Stmts(cvi ) Stmts value of cvi

τ threshold value for predictively discriminating costly
classes by Stmts values

ε(τ) sum of error rates in the prediction by τ

3. Empirical Study

3.1 Experimental Data Collection

We collected 3514 version-upgrade cases from three open
source software projects: “Relaxer,” [10] “JBoss” and
“JEdit” [11]. Table 3 shows brief descriptions of these soft-
ware.

For each case (class pair), we counted the num-
ber of different lines between the classes, and calcu-
lated Stmts value of the older version; formally, for each
version-upgrade case {cvi , cvi+1}, we computed d(cvi , cvi+1 )
and Stmts(cvi).

In this empirical study, we assumed α = 0.05, i.e., we
focused on the worst 5% cases, and predicted their older
versions would be the costly classes. Software managers can
use any α value as remarked above. Since many statistical
tests use “5%” as their significance level, “5%” would be
a reasonable boundary for determining some worst cases.
Therefore this study used α = 0.05 as a reasonable example.
In our set of samples, the worst 5% cases corresponded to
the class pairs in which 154 or more lines were modified
through their version-upgrades.

Notice that the testing activity will also have a large
impact on the version-upgrades, though this study focuses
on the class size. The higher testing density will decrease
faults in the software, and reduce the version-upgrade cost.
Unfortunately it may be difficult to obtain the testing data in
the open source software development, unlike in the cases of
closed projects which are managed by software vendors. In
open source software development, we are often able to col-
lect bug reports from the development site instead of testing
data. The bug density† would also be an important factor for
the code quality and the stability of upgrade.

Automatically generated codes and/or reused codes
might be included in our empirical data. Since such codes
are unlikely to be upgraded through application releases,
they would be noise for computing the threshold value. Thus
it is better to exclude those codes from the analysis if we can

Table 3 Open source software used as our experimental data.

software description version

Relaxer

Schema compiler using RELAX as
schema, which can generates Java
programs for processing XML ac-
cording to RELAX. Relaxer is writ-
ten in Java.

0.1
0.101
0.11
0.12
0.13
0.14
0.141
0.142

JBoss
J2EE based application server im-
plemented in 100% Pure Java.

2.2.2
2.4.0
2.4.1
2.4.3
2.4.4
2.4.5

JEdit
A programmer’s text editor written
in Java.

3.0
3.0.1
3.0.2
3.1
3.2

detect those codes††; The study of code clone [12] might be
helpful in detecting reused codes.

3.2 Result and Validation

Through the computation for possible τ with α = 0.05,
we found that ε(τ) has the least value when τ = 113 (see
Fig. 3). We could obtain a threshold value 113 in Stmts,
which might be a criterion of class size for controlling the
upgrade cost. Notice that the value of τ is computed using
only the version-upgrade cases. However there were many
classes which did not have any changes with the next re-
lease, and they were excluded from the computation since
they were not regarded as upgrade cases. In order to see an
effect of τ on not only upgraded classes but also the above
excluded classes, we conducted a follow-up. The initial
versions of the application software shown in Table 3 had
154 classes whose sizes were exceeded the threshold value.
These 154 classes include the classes which did not have
any changes with the next release. We investigated whether
those 154 classes were changed in later releases. As the
result, we found that 118 classes of them (ca. 77%) were
upgraded in a later release. Therefore τ(= 113) would have
a certain level of ability in predictive discrimination.

Since the above three software sets are in different
application domains, this experimental result does not de-

†We could get bug reports on “JBoss” and “JEdit” from the de-
velopment sites. In consequence, the bug densities (= Bugs / 1000
Stmts) were not much difference between “JBoss” and “JEdit”: the
bug density of “JBoss” and “JEdit” were 2.35 and 2.56, respec-
tively. Thus the code quality of “JBoss” would be at about the same
level as “JEdit.” Unfortunately we could not examine “Relaxer” in
terms of the bug density, since we could not find any repositories
of bug reports on “Relaxer.”
††In our empirical data collection, it was difficult to find which

fragment of the code is an automatically generated or reused code,
so we used all classes as our regular data.



LETTER
1287

Fig. 3 ε(τ) values for possible τ.

pend on specific domains, and would have a generality
for discriminating costly classes written in Java. We per-
formed an additional empirical study in order to validate
the generality of the above threshold value. We collected
another set of Java classes containing 556 version-upgrade
cases from two open source software projects “iReport” and
“Azureus” [11]†, and computed Stmts value for the older
version in each case. As the result, 408 upgrade-cases (ca.
73%) of them could be successfully discriminated by the
above threshold value. The threshold value seems to have
a certain level of generality for discriminating the costly
classes. While this empirical study uses some different ap-
plications together in order to see the generality, application
specific threshold values can be computed in similar ways.
The application specific threshold values are also of interest,
and would be more useful in some cases.

4. Conclusion and Future Work

Using a class size metric, Stmts, we have proposed a sim-
ple method for predictively detecting costly classes that are
likely to need large modifications through their version-
upgrades. The method provides a threshold value of class
size (in Stmts) for predictively discriminating those costly
classes. In our empirical study, we have derived the thresh-
old value 113 (in Stmts) from many Java samples of version-
upgrades (ca. 3500 pairs of classes). Further, using another
set of Java samples (ca. 500 pairs of classes), we have vali-
dated that the derived threshold value has a certain level of
generality for predictively discriminating the costly classes:
it succeeded as a predictive discriminator for about 73% of
our sample classes. The derived threshold value would aid
the development of Java classes as a simple criterion of class
size. This method is simple but would contribute to control-
ling software maintenance- and/or testing-efforts.

Our future work includes the followings: (1) en-
†iReport is a visual reporting tool based on JasperReports writ-

ten in 100% pure java, and Azureus is a powerful, full-featured,
cross-platform java BitTorrent client. The sample version-upgrade
cases are randomly collected from their CVS repositories; those
evaluated classes are the revisions 1.2 and 1.3 of iReport, and the
revisions 1.1, 1.2 and 1.3 of Azureus.

hancement of predictive-accuracy with extended multivari-
ate methods, (2) analysis of application specific threshold
values, (3) study of the impact of bug reports (bug den-
sity) on the version-upgrades, and (4) investigation of gen-
erated/reused code effect on the version-upgrades.

An analysis of source code changes themselves is also
our important future work; Fischer et al.[13], [14] have stud-
ied relationships among software release data and bug report
data, and Ying et al.[15] have proposed a method for predict-
ing source code changes with mining change history. For
more precise predictive discrimination of costly classes, our
future work would consider the source code changes with
their release data and change histories.

Acknowledgments

The authors would like to thank the developers of open
source software used in the empirical work. The authors
also wish to thank the anonymous reviewer for his/her
thoughtful and helpful comments.

This research was partially supported by the Inamori
Foundation, and the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Young Scientists (B), 2004,
16700037.

References

[1] K.E. Eman, S. Benlarbi, N. Goel, W. Melo, J. Lounis, and S.N. Rai,
“The optimal class size for object-oriented software,” IEEE Trans.
Softw. Eng., vol.28, no.5, pp.494–509, May 2002.

[2] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, “Exploring the re-
lationships between design measures and software quality in object-
oriented systems,” J. Syst. Softw., vol.51, pp.245–273, 2000.

[3] S.D. Conte, V.Y. Shenm, and H.E. Dunsmore, Software Engineering
Metrics and Models, Benjamin Cummings Publishing Inc., Calif.,
1986.

[4] L.C. Briand, J. Wust, J.W. Daly, and D.V. Porter, “ Exploring the re-
lationships between design measures and software quality in object-
oriented systems,” J. Syst. Softw., vol.51, pp.245–273, 2000.

[5] S.R. Chidamber and C.F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Trans. Softw. Eng., vol.20, no.6, pp.476–493,
June 1994.

[6] J. Gosling, B. Joy, G. Steele, G. Bracha, and James Java Language
Specification Gosling, The Java Language Specification, Second ed.,
Addison-Wesley, Boston, 2000.

[7] M. Takehara, T. Kamiya, S. Kusumoto, and K. Inoue, “Empirical
evaluation of method complexity for C++ program,” IEICE Trans.
Inf. & Syst., vol.E83-D, no.8, pp.1698–1700, Aug.2000.

[8] G.J. Badros, “JavaML: A markup language for Java source code,”
Proc. 9th Int’l World Wide Web Conf., 2000.

[9] E.L. Crow, F.A. Davis, and M.W. Maxfield, Statistics Manual,
Dover, New York, 1955.

[10] http://www.asahi-net.or.jp/˜dp8t-asm/java/tools/Relaxer/
[11] http://sourceforge.net/
[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multi-

linguistic token-based code clone detection system for large scale
source code,” IEEE Trans. Softw. Eng., vol.28, no.7, pp.654–670,
July 2002.

[13] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating bug re-
port data for feature tracking,” Proc. 10th Working Conf. on Reverse
Engineering (WCSE’03), pp.90–99, 2003.

[14] M. Fischer, M. Pinzger, and H. Gall, “Populating a release his-
tory database from version control and bug tracking systems,” Proc.



1288
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.6 JUNE 2005

of the International Conf. on Software Maintenance (ICSM’03),
pp.23–33, 2003.

[15] A.T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll, “Predict-

ing source code changes by mining change history,” IEEE Trans.
Softw. Eng., vol.30, no.9, pp.574–586, Sept. 2004.


