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SUMMARY In software development, comprehensive software re-
views and testings are important activities to preserve high quality and to
control maintenance cost. However it would be actually difficult to per-
form comprehensive software reviews and testings because of a lot of com-
ponents, a lack of manpower and other realistic restrictions. To improve
performances of reviews and testings in object-oriented software, this pa-
per proposes a novel model for detecting cost-prone classes; the model is
based on Mahalanobis-Taguchi method——an extended statistical discrim-
inant method merging with a pattern recognition approach. Experimental
results using a lot of Java software are provided to statistically demonstrate
that the proposed model has a high ability for detecting cost-prone classes.
key words: metrics, cost-proneness, prediction, discriminant analysis,
Mahalanobis-Taguchi method

1. Introduction

Comprehensive software reviews and testings are important
activities to preserve high quality of software products and
to control maintenance cost in software development [1]–
[3]. In actual software development, however, it would
be difficult to achieve comprehensive software reviews and
testings because of a lot of components, a large size, a com-
plex design, too short development duration, a lack of man-
power, and other realistic restrictions. It results in an in-
creased maintenance cost to ensure an acceptable quality
level in a software product. There have been proposed some
models and metrics for predicting maintenance cost and
cost-related attributes in software development projects [4]–
[7], such as maintenance time and manpower requirements.
These models and metrics are practical but not ultimate so-
lutions since they are not approaches to obviate rising main-
tenance cost.

A more effective solution to control maintenance cost
in software projects is to detect cost-prone components
(which would require higher cost than others in their main-
tenance activities) and/or fault-prone components (which
would include one or more faults), and perform careful re-
views and testings for such cost/fault-prone components.
There have been studied some prediction models based
on linear or nonlinear regression analysis: linear regres-
sion models for predicting lines of codes (LOC) to be
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changed in an object class through a version-upgrade us-
ing some object-oriented software metrics [8]–[10], a lo-
gistic regression model and a multivariate adaptive regres-
sion splines (MARS) model for evaluating a fault-proneness
of class [11], [12], etc. While the regression model ap-
proach is an effective prediction method, it will be diffi-
cult to fit various software attributes with the regression
line (or curve), especially outliers have harmful effects on
the model construction, so that pattern recognition meth-
ods (e.g. Bayesian classifier) [13] and statistical classifica-
tion methods (e.g. discriminant analysis) [14]–[17] would
be promising approaches to predict cost/fault-prone classes.
This paper proposes a novel model for predictively detect-
ing cost-prone classes in object-oriented software, based
on Mahalanobis-Taguchi (MT) method [18] that is an ex-
tended statistical discriminant method merging with a pat-
tern recognition approach.

This paper is organized as follows: Section 2 discusses
the theory of MT method along with brief descriptions of the
existing discriminant analysis methods. Section 3 proposes
a novel discriminant model for detecting cost-prone classes,
based on MT method. Section 4 presents empirical stud-
ies using actual data collected from three large open-source
software projects——Eclipse, Azureus, and jEdit. Section 5
draws our conclusion and future work.

2. Mahalanobis-Taguchi (MT) Method

An object class is a basic component in object-oriented
software quality control. The contribution of this paper
is to develop an effective model for predictively detecting
classes whose maintenance activities would require higher
cost than others; such classes are hereinafter called “cost-
prone” classes. The model to be developed in this paper
will discriminate cost-prone classes from the others using
some software metrics, i.e. quantified software characteris-
tics. This section presents brief discussions about some sta-
tistical methods underlying our discriminant model, and the
key method, Mahalanobis-Taguchi (MT) method.

2.1 Discriminant Analysis Method

Consider an entity which has some observable properties.
The entity can be expressed as a vector whose elements de-
scribe the observable properties, and then the entity vector
can be plotted on a scatter diagram. Now let our entities be
fallen into several groups. Discriminant analysis [15], [16]
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is a basic statistical method for drawing boundaries between
those groups on the scatter diagram. For the sake of conve-
nience, the remains of this section will discuss the case that
we have two entity-groups in a two-dimensional space.

A simple method for separating two groups is the per-
pendicular bisector between the mean points of two groups.
Figure 1 shows two entity-groups A and B, and the perpen-
dicular bisector between their mean points: the entities of
group A and B are marked by circles (“◦”) and crosses (“×”),
respectively; the mean points of group A and B are denoted
by xA and xB, respectively. In Fig. 1, however, three enti-
ties of group B (×’s) are fallen into group A side. In order
to avoid such inappropriate separation, we should take into
account the dispersion of data as well.

The separation discussed above is based on Euclidean
distances from the mean points of groups. We can introduce
another distance with consideration for dispersion of data:
Mahalanobis distance [15], [16]. For each entity group, Ma-
halanobis distance can be a group-specific distance that is
based on the dispersion of data in the group. Mahalanobis
distance is useful for describing a closeness of entity to a
group on the scatter diagram, and the distance has been ap-
plied to the discriminant analysis as a common method for
determining the closest group of entities. See Appendix A
for the details of Mahalanobis distance.

For an entity vector x, let D(A)(x) be Mahalanobis dis-
tance between x and xA; similarly, let D(B)(x) be Maha-
lanobis distance from xB. The locus of the following equa-
tion has been a boundary between the two groups:

|D(A)(x)|2 = |D(B)(x)|2 .
Figure 2 shows an example of the boundary based on Maha-
lanobis distance.

The perpendicular bisector such as shown in Fig. 1 is
a particular case of Mahalanobis distance-based boundary,
in which the two entity-groups have the same dispersion.
If two entity-groups have the same or approximately the

Fig. 1 Perpendicular bisector between two groups.

same dispersions (i.e. the same or approximately the same
variance-covariance matrices), the perpendicular bisector is
a useful boundary between two groups; otherwise, Maha-
lanobis distance-based boundary would be a better bound-
ary between groups. Needless to say, we can not make a
clear separation for the two groups that overlaps with each
other on the scatter diagram, even if we use the Mahalanobis
distance-based boundary.

However not all pairs of non-overlapped groups
are properly separated using Mahalanobis distance-based
boundary. Figure 3 shows an example of such a case that
the Mahalanobis distance-based boundary could not sepa-
rate two groups A (◦’s) and B (×’s). In Fig. 3, the two groups
are not overlapped; group B gathers in a ring around group
A. xA and xB, the mean points of group A and B, stay in close
to each other. Because of the closeness between xA and xB,
no boundaries drawn between xA and xB can separate the
two groups properly in Fig. 3. Mahalanobis distance-based

Fig. 2 Mahalanobis distance-based boundary.

Fig. 3 A case that the mean points of two groups are close.
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boundary would fail to discriminate data in such cases that
the mean points of groups stay in close each other.

N. Mochiduki et al. [17] have applied the above Ma-
halanobis distance-based discriminant analysis to an object-
oriented software maintainability prediction. In their em-
pirical work, 927 version-upgrade cases of object classes
written in Java were collected from some open-source
software development sites, and the older classes of the
version-upgrade cases were measured by the following
five metrics [19], [20]: (1) Stmts, the number of exe-
cutable/declaration statements; (2) NCM, the number of
class methods; (3) NMA, the number of new methods nei-
ther inherited nor overriding; (4) NMO, the number of meth-
ods overriding that of an ancestor class; (5) PIM, the number
of public instance method. Those object classes are plotted
into a five-dimensional space using their metric values; the
five-dimensional space corresponds to a scatter diagram dis-
cussed previously. The LOC modified in version-upgrade
(see Appendix B) is also counted for each version-upgrade
case. Then the largest 5% cases of modified LOC were con-
sidered to be high-cost cases, and their older classes were
regarded as high-cost classes. N. Mochiduki et al. have tried
to separate those high-cost classes from the others using
Mahalanobis distance-based boundary in the space where
classes are plotted using the above metrics. Their empiri-
cal results showed that the Mahalanobis distance-based dis-
criminant model were only modestly beneficial because of a
closeness between the mean points of two groups (high-cost
classes and others) as the issue discussed previously.

We carried out a check experiment for the empirical
work performed by N. Mochiduki et al. using the same
metrics suite. Table 1 shows a summary of our empirical
data measured for jEdit [27] version 4.0; jEdit is an open-
source text editor written in Java, and that has been used
in Mochiduki’s experiment as a part of empirical data. Ac-
cording to their definition of “high-cost” class, we consid-
ered high-cost classes to be ones whose modified LOC were
of the largest 5% in the version-upgrade “ver.4.0→ 4.1.” In
Table 1, µ{1,2} and σ1 denote the means and the standard de-
viations of the metric values, respectively. We could confirm
the issue that the mean points of the two groups stay in close,
since we can see µ2 ∈ [µ1 − σ1, µ1 + σ1], i.e. the distance
between the mean points of groups is less than the standard
deviation of the high-cost classes for each metric. Therefore
the existing discriminant analysis methods discussed above
(see Figs. 1 and 2) will not be useful in discriminating high-
cost classes and the others for that software. Notice that
the above discussion does not mean the distribution of met-
ric value is similar to Fig. 3. Figure 3 is an example to ex-
plain that the existing discriminant analysis methods could

Table 1 Empirical data measured for jEdit ver.4.0.

group µ,σ Stmts NCM NMA NMO PIM

high-cost µ1 1267.14 17.14 72.71 2.14 185.00
classes σ1 1239.46 39.65 77.33 2.73 194.01
others µ2 106.79 2.97 5.75 1.42 160.78

not separate data properly when the mean points of groups
stay in close each other.

The issue on a closeness between the mean points of
two groups leads us to require more powerful and flexible
discriminant method.

2.2 Mahalanobis-Taguchi (MT) Method

We now introduce another Mahalanobis distance-based
method applicable to the above problematic case that the
mean points of two groups are close to each other: the
method is called Mahalanobis-Taguchi (MT) method [18].

MT method evaluates a closeness of an entity to partic-
ular entity-group using Mahalanobis distance. For example,
let us consider a product quality control. Using some ob-
servable properties of product, we try to detect low quality
products in a set of products unexamined. We get started
by collecting some products that have good standard qual-
ity, and express them as the vectors of observable proper-
ties. The set of vectors corresponds to a group of standard
products. Then, for a product unexamined, we calculate the
Mahalanobis distance from the standard product group (see
Appendix A for the calculation). The Mahalanobis distance
describes a lack of closeness of the product to the standard
product group†. In other words, the greater distance from
the standard product group express the less quality of the
product. In the field of quality engineering, MT method
is often used as a useful method for discriminating product
quality as discussed above.

We briefly mention the difference between the discrim-
inant analysis described in Sect. 2.1 and MT method. The
goal of discriminant analysis is to draw a boundary between
entity-groups in a scatter diagram. MT method, however, is
a method for quantifying a closeness of entity to particular
entity-group. In that sense, MT method seems to be a pat-
tern recognition method rather than discriminant method. It
is fundamentally different that MT method does not draw
any boundaries “between the mean points” of entity-groups.

MT method can properly discriminate entities even in
the above problematic case that the mean points of entity-
groups are close to each other in the scatter diagram (e.g.
Fig. 3). In the case of Fig. 3, we can consider group A to
be a standard entity-group discussed above, and regard the
entities of group B as unexamined ones. Then we can eval-
uate closenesses of those unexamined entities (group B) to
the standard entity-group (group A), using Mahalanobis dis-
tance. It is likely that an entity of group B has a larger Maha-
lanobis distance than the entities of group A, and the entities
of group B are properly judged as the ones “other than group
A” by MT method; we will show the numerical example in
Sect. 3 (see Table 2).

†More precisely, the vectors of standard product group have to
be normalized such that the mean of Mahalanobis distance within
the group is equal to one.
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Table 2 Coordinate data and Mahalanobis distances of group A and B
shown in Fig. 3.

Group A

i xT
i D(xi)

1 (2.99, 4.00) 1.05
2 (1.77, 3.80) 0.69
3 (2.62, 4.02) 0.81
4 (2.15, 4.34) 0.97
5 (1.94, 4.28) 0.95
6 (2.25, 2.00) 1.08
7 (3.20, 3.75) 1.11
8 (3.15, 2.20) 1.23
9 (3.30, 3.35) 1.09

10 (3.38, 3.50) 1.21
11 (1.60, 4.00) 0.93
12 (2.60, 2.09) 1.02
13 (2.00, 2.00) 1.13
14 (1.67, 3.20) 0.63
15 (3.00, 2.16) 1.16
16 (1.67, 2.67) 0.83
17 (1.80, 2.20) 1.06
18 (3.43, 2.67) 1.27
19 (1.58, 3.00) 0.77
20 (2.33, 4.09) 0.76
21 (1.50, 3.50) 0.82
22 (1.60, 2.60) 0.93
23 (2.10, 4.10) 0.77
24 (1.74, 4.10) 0.90
25 (1.40, 3.10) 0.93

Group B

j xT
j D(x j)

1 (2.18, 5.58) 2.05
2 (1.36, 1.45) 1.89
3 (1.42, 5.03) 1.74
4 (2.64, 5.15) 1.75
5 (0.87, 3.72) 1.50
6 (3.89, 1.71) 2.06
7 (2.74, 0.76) 2.17
8 (3.48, 0.87) 2.33
9 (3.16, 1.10) 2.01
10 (3.03, 5.42) 2.14
11 (0.86, 2.30) 1.75
12 (4.60, 2.35) 2.50
13 (0.90, 1.53) 2.15
14 (4.26, 4.21) 2.32
15 (4.48, 3.66) 2.38
16 (1.91, 1.24) 1.81
17 (4.34, 2.74) 2.18
18 (3.53, 4.94) 2.08
19 (4.29, 2.02) 2.23
20 (0.95, 4.60) 1.75
21 (0.71, 3.22) 1.64
22 (4.19, 3.17) 2.01
23 (2.44, 1.13) 1.83
24 (3.79, 1.17) 2.30
25 (4.12, 2.53) 1.98

3. Discriminant Model Based on MT Method

We now apply MT method to object-oriented software qual-
ity control. Our goal is to predictively discriminate cost-
prone classes from the others using some metrics. The fol-
lowing is the algorithm for constructing our discriminant
model.

Algorithm 1 (Discriminant model construction):
Entities to be examined are object classes, and observable
quality-properties of those classes are measured by p met-
rics, m j (for j = 1, . . . , p); to avoid the potential for multi-
collinearity, no pairs of the metrics should have a middle or
strong correlation in their measurements. We consider that
all pairs of metrics used in the following algorithm must
have correlation coefficients less than 0.4 and grater than
−0.4, i.e. their absolute values are less than 0.4 [22].

I. Determination of calculation parameters

(i) Collect n sample classes, ci (for i = 1, . . . , n), to
form a standard class set in which each class has a
good standard quality in terms of maintenance cost.
MT method empirically requires that the number
of samples is grater than three-times the number of
metrics, i.e. n > 3p.

(ii) Measure sample class ci using metric m j (for i =
1, . . . , n; j = 1, . . . , p); let xi j be the metric value.
The vector of metric values, xi = (xi1, . . . , xip)T ,
expresses observable quality-properties of ci. The

vector is hereinafter called “metric vector.”

(iii) For each metric m j, calculate the mean of metric
values, x j, and the standard deviation, σ j.

(iv) Normalize xi = (xi1, . . . , xip)T with x j and σ j:

zi =

(
xi1 − x1

σ1
, . . . ,

xip − xp

σp

)T

,

and compute the correlation matrix R with respect
to the p metrics in {zi}. Notice that the mean point
of metric vectors is in the origin of coordinates
when we use the above normalized vectors.

II. Definition of Mahalanobis distance function

For any class whose metric vector is x = (x1, . . . , xp)T ,
the following equation gives the Mahalanobis dis-
tance† from the mean point of standard class set, D(x):

D(x) =

√
zT R−1 z

p
, (1)

where

z =
(

x1 − x1

σ1
, . . . ,

xp − xp

σp

)T

.

In order to evaluate a uniformity of the standard class
set, compute the standard deviation of D(xi)’s, σD.
(The mean of them is expected to be 1 since Eq. (1)
uses a normalized vector z and a normalizing factor
1/p.) MT method requires that the standard class set
has a high uniformity in terms of metric values; hence,
remove the class ci from the standard class set when
D(xi) > 1 + 2σD. (“1” is the mean of D(xi)’s.) If one
or more classes are removed from the standard set, go
back to I-(ii). Notice that we should keep n > 3p; if the
above removal operation makes n ≤ 3p, halt the per-
formance of algorithm, and review another samples.

III. Formulation of discriminant rule

Given a class c unexamined, whose metric vector is
x = (x1, . . . , xp)T . Let τ be a threshold value of
Mahalanobis distance for discriminating classes. If
D(x) ≥ τ, we consider that c will be other than the
standard class, i.e. c is a cost-prone class; otherwise,
we consider that c will have an acceptable quality in
terms of maintenance cost.

While the decision of τ depends on circumstances of
analysis, we propose an algorithm for deciding τ later.
(see Algorithm 2) �

We can apply the above algorithm to the case of Fig. 3
as follows: Consider the data shown in Fig. 3 to be two-
dimensional metric vector observed in classes; Fig. 3 de-
scribes 50 classes where the groups A and B have 25 classes,
respectively.

†Equation (1) uses the correlation matrix instead of variance-
covariance matrix (see Appendix A) since the vectors are normal-
ized in the computation.
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I-(i). Consider group A to be the standard class set, and re-
gard each data of group A as class ci (for i = 1, . . . , 25).

I-(ii). For each ci, consider the coordinate data in Fig. 3 to
be the elements of metric vector xi = (xi1, xi2)T . Ta-
ble 2 shows the elements of these vectors.

I-(iii). The means and the standard deviations of metric
values are x1 = 2.27, x2 = 3.23, σ1 = 0.677 and
σ2 = 0.812.

I-(iv). The correlation matrix in the normalized vectors {zi}
is

R =

(
1.00 −0.0859
−0.0859 1.00

)
.

II. For any class whose metric vector is x = (x1, x2)T , the
Mahalanobis distance from the mean point of standard
class set, D(x), is given by Eq. (1). Table 2 shows D(xi)
(for i = 1, . . . , 25). The standard deviation of Ma-
halanobis distances σD is expressed as σD = 0.175.
Then no classes have Mahalanobis distances grater
than 1 + 2σD = 1.35.

III. Suppose τ = 1 + 3σD = 1.52, and examine the classes
of group B with τ. Table 2 shows the Mahalanobis dis-
tances computed for group B, D(x j) (for j = 1, . . . , 25).
Using τ = 1.52 we can discriminate 24 classes (96%)
of group B from group A properly. Needless to say,
all (25) classes of group A have Mahalanobis distances
less than τ, so that the model separates 49 classes
(98%) properly. The model proposed has a high ability
for discriminating entities even in the above problem-
atic case shown in Fig. 3.
Notice that Fig. 3 is an example in which the existing
discriminant analysis methods (discussed in Sect. 2.1)
could not separate data properly. This example says
MT method would be a better and promising discrimi-
nant method than the existing ones, but not MT method
is intended to be used for only the case of Fig. 3. �

While the above calculation has used “1 + 3σD” as the
threshold value τ, it has been one example among many
available threshold values. “1 + 3σD” seems to be a reason-
able threshold since the standard class set (group A) consists
of the classes whose Mahalanobis distances are less than or
equal to “1 + 2σD.” However we could not find a sound
ground to believe that the gap between “2σD” and “3σD” is
sufficient for discriminating the cost-prone classes from the
others. To decide an objective and valid threshold value for
predicting cost-prone classes, we now propose a decision al-
gorithm using version-upgrade data in object-oriented soft-
ware.

Table 3 Contingency table for classes.

D(x)
< τ ≥ τ total

typical high-cost classes e1 s1 k1

others s2 e2 k2

Algorithm 2 (Decision of threshold value τ):
Given an object-oriented software, including k classes, to
be analyzed with the above discriminant model. Let {Di}ki=1
be the sequence of Mahalanobis distances computed for the

Fig. 4 Flowcharts of model operation and construction.
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k classes (see Algorithm 1). Now categorize the k classes
into the two groups (1) “typical” high-cost classes, and (2)
the others, with a particular guideline (e.g. “whether a class
has hundreds of LOC modified in the version-upgrade or
not”). For any threshold value τ, the k classes are classified
into four categories as the contingency table [23] shown in
Table 3, where k1 + k2 = k.

Define τ = Di such that ∀ j [ε(Di) ≤ ε(D j)], i.e. ε(τ)
has the least value when τ = Di, where ε(·) is the sum of
error rates given by the following equation †:

ε(τ) =
e1

k1
+

e2

k2
. (2)

If ∀ j [ε(Di) ≤ ε(D j)] holds for two or more Di’s, adopt the
least Di as τ. �

Algorithm 2 is based on the idea that the best thresh-
old value τ has the least error in the discrimination of data.
That is a pattern recognition algorithm separating “high-cost
class” patterns from the others, and the decision of thresh-
old value corresponds to a pattern learning. The algorithm
uses only “typical” high-cost class patterns since a variety
of patterns would provide a noise to the pattern learning.

In this section, we have proposed a discriminant model
for predicting cost-prone classes. Figure 4 summarizes the
model construction flow and the operation flow.

The related work includes some regression models for
predicting maintenance costs, LOC to be changed in a class
through a version-upgrade, using some object-oriented soft-
ware metrics [8]–[10]. While the regression model approach
is an effective prediction method, outliers have harmful ef-
fects on the model construction, and would make a re-
strictive prediction model. Our model focuses on predic-
tively discriminating cost-prone classes, rather than estimat-
ing maintenance costs of classes with a regression equation.
Our model overcomes a failing of the existing statistical dis-
criminant methods (see Sect. 2), and has also a robustness
against outliers in the model construction since the model
adopts a pattern recognition approach.

4. Empirical Study

This section provides empirical validations of the discrimi-
nant model proposed in Sect. 2.

The following empirical studies focus on version-
upgrades in object-oriented software. We consider LOC
modified in a version-upgrade of a class to be a basic mea-
sure of maintenance cost that went into the class [8], [9],
[14]. The more modified LOC corresponds to the higher
maintenance cost. A modified LOC is composed of added
LOC, removed LOC, and changed LOC, where comment
statements and empty (only white space(s)) lines are ex-
cluded. See Appendix B for the details.

The goal of the proposed model is to discriminate
“cost-prone” classes from the others; cost-prone classes
would have more modified LOC than the other classes in
further version-upgrades. We collected 5, 760 classes writ-
ten in Java from three open-source software projects, and

constructed our models with Algorithms 1 and 2. Then we
performed statistical tests to demonstrate an effectiveness of
the proposed model.

4.1 Eclipse

Eclipse [24] is a universal tool platform, and a well-known
and widely used open-source object-oriented software.

We collected 2, 593 classes from the “jdt.core” com-
ponent in Eclipse version 2.0, 2.1, and 3.0. This empiri-
cal study tries to predictively detect cost-prone classes in
Eclipse ver.2.1, using

• the metric data collected from the classes in ver.2.0,
and
• the version-upgrade data in ver.2.0→ 2.1.

The cost-proneness of a class in ver.2.1 is evaluated using
the version-upgrade data in ver.2.1→ 3.0.

Now we perform our empirical study on Eclipse as fol-
lows: (see also Fig. 5)

1. [Measurement of LOC modified in version-upgrade]:
Count LOC modified through the version-upgrades
“ver.2.0→ 2.1” and “ver.2.1→ 3.0.”

2. [Metric data collection in Eclipse ver.2.0]:
Measure software quality attributes of classes in
Eclipse ver.2.0 using the metrics described later.

3. [Model construction]:
Construct our discriminant model using

• the metric data measured in ver.2.0, and
• the modified LOC in ver.2.0→ 2.1.

(see Algorithm 1)

Decide our threshold value τ using the modified LOC
in ver.2.0→ 2.1. (see Algorithm 2)

Fig. 5 Data flow in empirical study of Eclipse.

†In Table 3, e1 and e2 correspond to the numbers of classes
failed in the discrimination with τ. Equation (2) uses normalized
impact level of the errors e1 and e2.



AMAN et al.: A MODEL FOR DETECTING COST-PRONE CLASSES BASED ON MAHALANOBIS-TAGUCHI METHOD
1353

4. [Prediction of cost-prone classes in Eclipse ver.2.1]:
Measure software quality attributes of classes in
Eclipse ver.2.1 using the metrics, and predict cost-
prone classes in the next version-upgrade 2.1 → 3.0
using the metric data and the constructed model.

5. [Statistical test]:
Perform a statistical test to validate whether the classes
predicted as cost-prone have actually more modified
LOC than the others in the version-upgrade ver.2.1 →
3.0. �

4.1.1 Measurement of LOC Modified in Version-Upgrade

We measured LOC modified in the version-upgrades
ver.2.0 → 2.1 and ver.2.1 → 3.0. Table 4 and Fig. 6 shows
a summary of statistics concerning the modified LOC.

4.1.2 Metric Data Collection in Eclipse Ver.2.0

To collect metric data of Java classes, we developed a suite
of metric collection tools. Table 5 shows the 16 metrics that
are available in our tool suite. See the literatures [19]–[21]
for more details of these metrics.

Using our tool suite, we performed metric data collec-
tion for the 596 classes included in Eclipse ver.2.0. We omit
the list of their metric data for lack of space.

4.1.3 Model Construction

Construct our discriminant model according to Algorithms
1 and 2, using the modified LOC in ver.2.0 → 2.1 (that are
counted in Sect. 4.1.1) and the metric data of ver.2.0 (that
are collected in Sect. 4.1.2).

Now we have 16-dimensional metric vectors in which

Table 4 Statistics of modified LOC in Eclipse version-upgrades.

number of data mean (µ) standard deviation (σ)
883 91.9 235

Fig. 6 Histogram of modified LOC in Eclipse version-upgrades.

each element corresponds to each metric shown in Table 5.
In order to avoid the potential for multicollinearity in Maha-
lanobis distance computations, we have to use only the met-
rics that have high independency in their measurements. In
this empirical work, the following five metrics are selected
as our independent metrics since the other 11 metrics had
middle or strong correlations (absolute value of their corre-
lation coefficients are grater than or equal to 0.4 [22]) with
one of the five metrics:

• DIT: the depth of a class in the inheritance tree. The
deeper (the higher depth level) classes would be more
likely to be overridden their methods and/or to be ap-
pended new methods. DIT value is related to a testabil-
ity of the class.
• NAI: the number of attribute in a class. The more NAI

value means that the class has more information to be
managed, and the class has more roles. The less NAI
value would indicate the higher reusability of the class.
• NCM: the number of class methods in a class. NCM

denotes how many operations are common in the all
instances of the class. It is a rare case that a class has
many class methods, so that the larger NCM value may
mean a poor class design.
• NCV: the number of class variables in a class. This is

the number of variables shared in the all instances of
the class. As in the case of NCM, it is a rare design to
have many class variables, and the larger NCV value
may indicate a poor class design.
• NM: the total number of methods in a class. NM shows

how many operations can be performed in the class.
This is a basic measure concerning the size and func-

Table 5 Metrics used in data collections.

metric description

DIT depth of inheritance tree; the depth level of the class
in the class inheritance tree.

NAI number of attributes in the class.
(excluding inherited ones)

NCM number of class methods in the class.
NCV number of class variables in the class.
NIM number of instance method in the class.
NIV number of instance variables in the class.
NM number of all methods in the class.
NMA number of methods newly added in the class.

(not inherited, and not overridden)
NMI number of methods inherited from the ancestors and

not overridden in the class.
NMO number of methods overridden in the class.
NMNpub number of non-public methods implemented in

the class.
NMpub number of public methods implemented in the class.
NumPara number of parameters; the sum of number of method

parameters implemented in the class.
PIM number of public instance methods implemented in

the class.
SIX specialization index; the metric value is computed as

NMO × DIT / (NMO + NMA + NMI).
Stmts number of executable/declaration statements in the

class.
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tion points of the class. The more NM value denotes
that the class would have more efforts of design, im-
plementation, and maintenance for the class.

The selected five metrics seem to be a reasonable measure
suite for predicting cost-prone classes, since these metrics
are concerning a class testability, class design, and develop-
ment efforts.

In Algorithm 1-I-(i), we determine n sample classes to
form a standard class set in which the classes have good
standard quality. In the context of this empirical work,
those n sample classes should have low modified LOC in
the version-upgrade. The distribution of modified LOC is
remarkably concentrated in lower values (see Fig. 6), and
it is difficult to statistically determine lower outliers using
the mean (µ) and standard deviation (σ) since the frequently
used criteria, such as µ − σ and µ − 2σ, make no sense in
this case (they have negative values; see Table 4). We now
empirically define a standard class set such that a class of
the standard set has a modified LOC less than 10. Then we
obtain the standard class set containing 203 classes.

In Algorithm 1-I-(ii),(iii) and -II, we got the Maha-
lanobis distances D(xi) (for i = 1, . . . , 203) and the standard
deviation σD = 0.685. Then we found six classes whose
Mahalanobis distances are grater than 1 + 2σD = 2.37, and
removed those six classes from the standard class set. We
iterated Algorithm 1-I-(ii),(iii) and -II, until all classes’ Ma-
halanobis distances are less than or equal to 1 + 2σD. After
16 iterations, we got a sophisticated class set composing 135
classes.

In Algorithm 2, we determine the threshold value τ.
Now we have to define “typical” high-cost classes with a
particular guideline; in the context of this empirical work,
we have to determine “typical” large modified LOC in the
version-upgrade. We consider higher outliers in the distri-
bution of modified LOC to be those typical large ones, and
use the guideline that typical large modified LOC is grater
than µ+2σ. We selected 8 classes whose modified LOC are
grater than µ+2σ = 561.9 (see Table 4) as typical high-cost
classes, and the remaining 396 classes as the others. Then
we found that ε(τ) has the least value when τ = 3.10 (see
Fig. 7), i.e. our threshold value of Mahalanobis distance is
τ = 3.10.

Now our construction of discriminant model has been
completed. The followings are the details of that model:
Given a class whose metric vector is x = (x1, x2, x3, x4, x5)T .

• Mahalanobis distance function:

D(x) =

√
zT R−1 z

5
,

where

z =
(

x1 − 2.96
1.53

,
x2 − 1.02

1.29
,

x3 − 1.93
1.44

,
x4 − 72.8

37.0
,

x5 − 37.0
13.9

)T

,

and

Fig. 7 Sum of error rates ε(τ).

Table 6 Means and standard deviations of metric values in Eclipse.

group µ,σ DIT NAI NCM NCV NM

high-cost µ1 2.00 8.13 2.13 47.25 122.13
classes σ1 1.07 9.78 3.27 109.73 98.04
others µ2 2.79 3.75 2.69 77.45 47.60

R−1 =



DIT NAI NCM NCV NM
8.06 0.359 2.32 −6.19 −3.75

0.359 1.57 0.545 −0.578 0.513
2.32 0.545 14.0 −1.22 −14.0
−6.19 −0.578 −1.22 6.77 0.766
−3.75 0.513 −14.0 0.766 17.1

.

• Discriminant rule:
if D(x) ≥ τ = 3.10 then we consider the class is a cost-
prone class; otherwise, the class is not cost-prone. �

Table 6 shows the means and the standard deviations
of the metric values in Eclipse. Since we can see µ2 ∈
[µ1 − σ1, µ1 + σ1], i.e. the mean points of the two groups
stay in close, our MT-based model would be better in dis-
criminating cost-prone classes than the existing statistical
discriminant models discussed in Sect. 2.1.

4.1.4 Prediction of Cost-Prone Classes in Eclipse Ver.2.1

We have constructed a discriminant model using data of
Eclipse ver.2.0: the metric data of ver.2.0 and the version-
upgrade data in ver.2.0 → 2.1. Now we apply the model to
the metric data of ver.2.1 to predict cost-prone classes in the
next version-upgrade ver.2.1→ 3.0.

We had 618 classes in Eclipse ver.2.1, and inputed their
metric data into the model constructed. Notice that the 618
classes include not only upgraded classes (modified LOC
> 0) but also non-modified ones (modified LOC = 0).

The model predicted that 210 classes are cost-prone,
and 408 classes are the others. Table 7 shows statistics of
their actual modified LOC in the version-upgrade ver.2.1→
3.0 where µ and σ denote the mean and the standard devia-
tion of modified LOC, respectively.
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Table 7 Statistics of modified LOC in classes predicted.

prediction number of class µ σ

cost-prone 210 181 397
others 408 42.3 70.9

4.1.5 Statistical Test

Finally we performed a statistical test in order to validate the
above predictions made by our model.

In this empirical work, we have considered that cost-
prone classes would have large modified LOC in further
version-upgrades. Thus the set of cost-prone classes pre-
dicted by our model should have a statistically significant
difference from the set of other classes in their modified
LOC, i.e. it should be statistically showed that our cost-
prone classes have larger modified LOC than the others.

We make the following hypotheses:

H0 (null hypothesis)
The mean of modified LOC in classes predicted as
cost-prone (µ1) is equal to the mean of that in the other
classes (µ0): µ0 = µ1.

H1 (alternative hypothesis-1)
The mean of modified LOC in classes predicted as
cost-prone is grater than the mean of that in the other
classes: µ1 > µ0.

H′1 (alternative hypothesis-2)
The mean of modified LOC in classes predicted as
cost-prone is “exactly” grater than the mean of that in
the other classes: µ1 > 2µ0. �

The test can be performed with the normal probabil-
ity distribution. Notice that this case corresponds to a test
in large size samples; the sizes of two groups are 210 and
408. If our sample size is small (< 30), we should perform
Student’s t-test instead [25].

Let X1 and X0 be the sample means of modified LOC
in the classes predicted as cost-prone and as the others, re-
spectively. Similarly let s1 and s0 denote the sample stan-
dard deviations of modified LOC in the classes predicted as
cost-prone and as the others, respectively. Assume the null
hypothesis H0 is true. Then the distribution of X1−X0 is the
normal distribution N(0, σ2

s), where

σs =

√
s2

1

ns1

+
s2

0

ns0

,

and ns1 and ns0 are the numbers of classes predicted as cost-
prone and as the others, respectively. From Table 7, we have
X1 − X0 = 138.7, and σs = 27.7. In this case, the p-value is
2.72×10−07, and the null hypothesis (H0) can be rejected; we
can accept the alternative hypothesis-1 (H1) with the signif-
icance level 0.00001%. When we replace X0 with 2X0, the
p-value is 2.50 × 10−4. We can also accept the alternative
hypothesis-2 (H′1) with the significance level 0.1%.

Therefore we could validate that our model has a high

ability for predictively discriminating cost-prone classes in
Eclipse jdt.core component.

4.2 Other Software: Azureus and jEdit

We also performed our model constructions and statisti-
cal validations to other open-source software: Azureus [26],
and jEdit [27]. Azureus is a cross-platform Java BitTorrent
client, and that is a heavily-downloaded software in Source-
Forge.net [28] (it is No.1 on the download-count ranking at
the time of writing this paper). jEdit is a programmer’s text
editor written in Java, and that has been maintained for 5
years at SourceForge.net.

We collected 2, 549 classes and 618 classes from
Azureus (ver.2.0.8.2, 2.1.0.0 and 2.2.0.0) and jEdit (ver.4.0,
4.1 and 4.2), respectively. We present only their empirical
results for lack of space.

• Azureus
In measurements of classes included in Azureus, the
following six metrics were independent: DIT, NAI,
NCM, NCV, NMO, and PIM; hence we used those six
metrics for our model construction. Note that the se-
lection procedure of metrics is the same as the case
of Eclipse, i.e. we selected independent metrics such
that the absolute values of correlation coefficients in all
metrics pairs are less than 0.4† (see Algorithm 1).
The model predicted that 23 classes are cost-prone
ones, and the remaining 595 classes are the others.
Since this case corresponds to a small sample size, we
performed Student’s t-test with the degree of freedom
616(= 23+595−2). The test results said the alternative
hypothesis-1 (H1) could be accepted with the signifi-
cance level 0.001% (p-value = 4.87×10−5), and the al-
ternative hypothesis-2 (H′1) could be also accepted with
the significance level 1% (p-value = 0.00575).
• jEdit

We constructed our discriminant model using the fol-
lowing four metrics†† that are independent in the mea-
surements of classes included in jEdit: DIT, NAI,
NCM, and NMO.
The model predicted that 7 classes are cost-prone ones,
and the remaining 162 classes are the others. We also
performed Student’s t-test with the degree of freedom
167(= 7+162−2) in this case. As the results, we could
accept the alternative hypothesis-1 (H1) (p-value is ap-
proximately 0; it was too small to evaluate in our com-
puter environment), and we could also accept the al-
ternative hypothesis-2 (H′1) with the significance level
0.000000000001% (p-value = 3.22 × 10−15).

We summarize our empirical results in Table 8. These
empirical results statistically show our discriminant model is
a useful model for predictively detecting cost-prone classes.

†The threshold value is determined according to the litera-
ture [22].
††The selection procedure of metrics is also the same as the

cases of Eclipse and Azureus.
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Table 8 Summary of empirical results.

software metrics used in the model p-value

(H′1 : µ1 > 2µ0)

Eclipse DIT, NAI, NCM, NCV, NM 2.50 × 10−4

Azureus DIT, NAI, NCM, NCV, NMO, PIM 5.75 × 10−3

jEdit DIT, NAI, NCM, NMO 3.22 × 10−15

We have used different metrics suites for different soft-
ware, Eclipse, Azureus, and jEdit. It is natural that differ-
ent software have different quality characteristics, and re-
quire different metrics suites for representing their quality
attributes. Our model could flexibly accept the differences in
the metrics for all software. A software requiring more met-
rics may have more complex distribution of metric data, then
may be harder for discriminating cost-prone classes from the
others, and vice versa. That might be one of interpretations
of the differences in the empirical results shown in Table 8;
the more metrics used in the model leads to the higher (the
more wrong) p-value.

5. Conclusion and Future Work

We have proposed a model for predictively discriminating
“cost-prone” classes, based on Mahalanobis-Taguchi (MT)
method. MT method is a powerful method to detect low
quality products using some observable properties, and we
have applied the idea of MT method to object-oriented
software quality control. The model proposed in this pa-
per has been designed for discriminating cost-prone classes
from the others using object-oriented software metrics. This
model overcomes failings of the existing statistical discrim-
inant methods [15]–[17] and regression models [8]–[10].

In our empirical work, we collected 5, 760 classes
written in Java from three open-source software projects:
Eclipse, Azureus, and jEdit. For each software, we con-
structed the discriminant models, and performed statistical
tests to validate the models. The empirical results show
our model can predictively discriminate cost-prone classes
from the others, with the significance level 1% (p-values
are 2.50 × 10−4, 5.75 × 10−3 and 3.22 × 10−15 in Eclipse,
Azureus and jEdit, respectively.) The proposed model will
be useful in predictively detecting cost-prone classes writ-
ten in Java, and would aid effective reviews and testings of
object-oriented software.

The proposed model could be a general framework for
predicting software quality attributes using software met-
rics, since the model has no restrictions on metrics to be
used (excepting independency), and on quality attributes to
be predicted (not only “cost-proneness”). The application of
this model into other quality attributes will be one of our fu-
ture work. The followings will also be our future work: (1)
investigation of automatically generated and/or reused code
(including code clones [29]) effects on our model, (2) study
of the impact of comment statements, excluded in our em-
pirical work, on version-upgrades, and (3) analysis of source
code changing histories [30], [31] and failure reports [32],

[33] in order to find other useful factors for enhancement of
our model.
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Appendix A: Mahalanobis Distance

In measuring the “distance” between two points in a space,
we commonly use Euclidean distance: for example, in a
two-dimensional space, the (Euclidean) distance between
p1 = (x1, y1)T and p2 = (x2, y2)T is expressed as

|p1 − p2| =
√

(x1 − x2)2 + (y1 − y2)2 .

However Euclidean distance may not be useful for a
classification of entity on the scatter diagram (i.e. discrim-
inant analysis) since it can not consider “dispersion” of
data. For example, Fig. A· 1 is a scatter diagram plotting
entities that are categorized into two groups A and B. The
entities of group A and B are denoted by circles (◦) and
crosses (×), respectively. Now let xA = (1.71, 2.92)T and
xB = (7.52, 4.04)T are the means of two groups, respec-
tively. In Fig. A· 1, p = (4.70, 2.70)T seem to be closer to
group B than A. However p is nearer to xA than xB in Eu-
clidean distance:

|p− xA|2(
 8.98) < |p− xB|2(
 9.74)

Thus a linear boundary based on Euclidean distance such as

Fig. A· 1 Two groups of data.

the perpendicular bisector between xA and xB (see Fig. 1)
classifies p into inappropriate group, A.

Mahalanobis distance is different from Euclidean dis-
tance in considering dispersion of data. The variance and
covariance of data are also used to calculate Mahalanobis
distance. While Euclidean distance between p and xA

(|p− xA|E) has been given by

|p− xA|2E = (p− xA)T (p− xA) ,

Mahalanobis distance between them (|p−xA|M) is calculated
using the following equation:

|p− xA|2M = (p− xA)T S −1
A (p− xA) ,

where S A is the variance-covariance matrix for the data of
group A. We can also calculate Mahalanobis distance for
group B in the similar way. Mahalanobis distance is a group-
specific distance that is based on dispersion of data, i.e. the
variance-covariance matrix. For example, let S A and S B are

S A =

(
0.0508 0.00748

0.00748 0.251

)
, S B =

(
4.87 0.256

0.256 1.76

)
.

Then we obtain

|p− xA|2M = (p− xA)T S −1
A (p− xA) 
 178 ,

and

|p− xB|2M = (p− xB)T S −1
B (p− xB) 
 2.44 .

Therefore we see |p − xB|M < |p− xA|M , and p will be cat-
egorized into group B by the Mahalanobis distance-based
discriminator.

Appendix B: LOC Modified in Version-Upgrade

In this paper, LOC modified in a version-upgrade is consid-
ered to be the number of different lines of source codes in
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two different versions, excepting comment statements and
empty (only white space(s)) lines.

Given a version-upgrade case of a source code: let S 1

and S 2 be the older code and the newer one, respectively.
We can get the same code as S 2 by iterating one of the fol-
lowing operations:

(1) insert consecutive n1 (≥ 1) lines into S 1;

(2) remove consecutive n2 (≥ 1) lines from S 1;

(3) replace consecutive n3 (≥ 1) lines with another consec-
utive n′3 (≥ 1) lines in S 1.

Regard the above operations (1), (2), and (3) as
“adding,” “removing,” and “changing,” respectively. Then
define modified LOC as the total count of lines involved in
the above operations: (1) n1, (2) n2, and (3) max(n3, n′3),
where max(a, b) is a if a > b otherwise b.

We can capture the lines involved in the above opera-
tions using Unix command diff; our empirical studies used
“GNU diffutils ver.2.8.1” with the option “-cbwB.” These
options have the following functions:

• “-c”: use the context output format;
• “-b”: ignore changes in amount of white space;
• “-w”: ignore white space when comparing lines;
• “-B”: ignore changes that just insert or delete blank

lines.

Figure A· 2 shows an example of use of diff command
for two Java source files in which all comment statements
are erased in advance; we have developed a tool for eras-
ing all comment statements from a Java source file, and the
tool has used in our empirical studies. In Fig. A· 2, the lines

Fig. A· 2 Example of output of diff.

whose header are “+,” “-,” and “!” correspond to the added
lines, the removed ones, and the changed ones, respectively.
From the above definition, we can get the modified LOC in
Fig. A· 2 as 4(= n1 + n2 +max(n3, n′3) = 1 + 1 + 2).
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