Knowledge-Based Software Engineering 46
A. Caplinskas, H. Pranevicius, T. Nakatani (Eds.)

Technologija, 2010

© 2010 H. Aman, T. Ohkochi. All rights reserved

AN APPLICATION OF GROWTH CURVE MODEL FOR
PREDICTING CODE CHURN IN OPEN SOURCE
DEVELOPMENT

Hirohisa AMAN" and Takahiro OHKOCHI
Graduate School of Science and Engineering, Ehime University, Japan

Abstract. Quantitative quality management and prediction are significant challenges in
open source software development. While anyone could access to source code through
the code repository, it is not easy to perform a quantitative assessment and/or prediction
of the software quality. To provide a mean of quantitative management utilizing a code
repository, this paper proposes a mathematical modeling of source code churn—a growth
curve model based on a non-homogeneous Poisson process. An empirical work using 12
packages in Eclipse is performed, and the results show: (1) an inflection S-shaped curve
model could be well-fitted to actual data, and (2) the proposed model could predict the
code churn in the next 5 months with less than 10% error.

Keywords. Open source development, quantitative management, source code churn,
prediction, growth curve model.

1. Introduction

In recent years, open source software(OSS) has been active in various fields such as operating
system, Web server, embedded system, and so on. Some vendors use OSS in their products
and/or services as key components[7]. However there is a difficulty in a quality assurance of
0SS; Although anyone could access to a source code of OSS through the public code repository,
it is not easy to perform a quantitative assessment and/or prediction of the OSS quality. While a
source code is a detailed raw data of the development activities, the evolutionary change of the
whole software could not be understood by simply observing each code. Such difficulty may
lead to a barrier to industrial promotion of OSS utilization.

For an OSS project, a source code is a major product reflecting the development activities. To
perform a quantitative management of OSS development, it is important to observe not only
the source code but also its change-history showing the evolutionary process. Especially on
change history, many repository mining techniques have been studied in recent days[8]. A
repository mining is a powerful method to find some knowledge from a code repository.
However it is a method for getting information through statistical analysis and/or machine
learning, not for modeling the observed phenomena mathematically.

As another related work, software evolution in open source development has been studied as
well. Godfrey and Tu[5] investigated a growth pattern of source code in Linux, and Xie et al.[15]

1Corresponding Author: Hirohisa AMAN, 3, Bunkyo-cho, Matsuyama-shi, Ehime, 790-8577 Japan,
aman@cs.ehime-u.ac.jp.

H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ... 47

also discussed the evolution patterns through their empirical study using many open source
releases. Paulson et al.[11] investigated some growths in some major open source software
including Linux, Apache and Gcc. While some software evolution patterns have been discussed,
there are few studies focusing on a mathematical model of tendency in software evolution
(code change).

Toward a mathematical modeling of the change history, we introduce another perspective on
the analysis of code repository in this paper—a stochastic modeling. We consider a code change
to be a stochastic event because many programmers would continue concurrently committing
to the repository; in other words, it would be uncertainty when the next code change would be
done.

In this paper, we propose a stochastic model of code change events (code churn) in order to
formulate a novel method for explaining code churn mathematically. The contribution of this
paper is to present some experimental trials showing that our mathematical model has a high
level of ability to predict code churn in a large-scale OSS.

The rest of the paper is organized as follows: Section 2 describes the code churn in open
source development, and introduces basic growth curve models. Then a stochastic modeling of
code churn related to the growth curve model is proposed. Section 3 performs some empirical
work using Eclipse. In the empirical work, some packages of source code are collected from
Eclipse repository, and some trials are performed to fit growth curves to the actual code churn.
Then the model’s ability to predict code churn is evaluated. Finally, Section 4 presents our
conclusion and future work.

2. Code Churn and Growth Curve Model

2.1. Code Churn in Open Source Development

In an open source development, source code changes are basic events reflecting the
development activities. It is important to observe the code churn for a quantitative
management of the open source development; term “code churn” includes code addition,
deletion and modification. We measure the amount of code churn with the total changed LOC
that is the total of added LOC (3,), deleted LOC (84) and modified LOC (J,,), excepting blank lines
and comments:

code churn =3, + &4 + Opp;

where d,,is the greater LOC in corresponding fragments modified through version-upgrade.
Generally a code modification corresponds to two different fragments—the older x lines were
modified to the newer y lines. We define the amount of modified LOC as max(x; y). For example,
Fig.1 shows a code churn in Java code fragments. The differences between the fragments could
be captured by using GNU di f £[4] 2, and Fig.2 shows the execution result. In this case,

e Line 1 was deleted: &4 = 1;

e Line 3 was modified to new lines 3 and 4: m = max(1, 2)=2;

e New line 5 was added: 5, = 1.

Thus we get code churn=1+1+2=4:

Most OSS projects have public code repositories to automatically manage their source code
and code churn. While anyone could access to source code and code churn through the public
repository, it is not easy to understand the developmental status. For instance, a major open
source development site, SourceForge.net[12], gives some statistical information including the
download history, tracker traffic statistics, and so on. However little statistics about code churn

2 diff 2.8.1; the execution option was “-Bw.”

48 H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ...

could be easily obtained at such development site. While the number of version-upgrade and
some simple diff results such as “Changes since 1.3: +8 -6 lines” could be
obtained, it is not easy to organize all of such data about code churn scattered in the repository,
and it is not easy to get useful statistics for a statistical analysis of code churn tendency.

2
1: JFrame parent = new JFrame();
2: System.err.println("This is GUI sample:");
3: JOptionPane.showMessageDialog(parent, “Hello, world”);
4: System.err.println(”done.”);
| version-upgrade
1: Systemverr.printin("This is GUIL sample:™):
2: JOptionPane.showMessageDialog(new JFrame(),
3 "Hello, world”);
I: System.err.println(”done.”):
5: System.err.println(”Press Cirl+c to quit.”);
e

Figure 1. Example of code churn.
= 5
1d0
< JFrame parent = new JFrame():

3¢2,3
< JOptionPane.showMessageDialog(parent, "Hellc, world");

> JOptionPane.showMessageDialog(new JFrame(),

> "Hello, world"});
4a5

> System.err.println("Press Ctrl+c to guit.");

/

Figure 2. Execution result of di £ f for fragments shown in Fig.1.

To get statistics about code churn, we collect monthly snapshots (source code) from the code
repository, and examine monthly differences in the source code; we have developed a tool for
collecting changed LOC, DiffLineCounter.jar[l]. Then we propose a mathematical
model for explaining and predicting code churn from a stochastic viewpoint. We consider a
code churn to be a stochastic event similar to a “customer arrival” in the queueing theory[10],
and try to model code churn with a Poisson process model, especially a growth curve model.

2.2. Growth Curve Model

There has been considerable research on the software reliability growth model[3, 14] in
which the cumulative numbers of faults or failures are explained with some mathematical
models. Most of major models are based on the non-homogeneous Poisson process (NHPP)
considering a fault (or failure) detection to be a stochastic event: Let N(t) be the random
variable representing the cumulative number of faults (or failures) detected by time t, and the
probability of getting N(t) = n is given as the Poisson distribution function,

Pr{N(t)=n} = %rfﬂ“ (n=0,1,2,...)

where

H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ... 49

H(t) = j: hiz)dx (E=10).

Table 1. Basic NHPP models.

exponential mode] delayed S-shaped model inflection S-shaped model
1— bt

H(t)=all —e~b) | H(?) —-r.-{] (1.4 hf}r-—“} H(t)=a -

1+ ce—

(e, b, o constants)

H(t) is the mean value function of N(t), i.e., the expected number of faults (or failures)
detected by time t, and h(t) is the fault (failure) detection rate at t. NHPP is a Poisson process
with a time dependent fault (failure) detection rate, i.e., h(t) is variable over time; if h(t) is a
constant, A, then we get H(t) = At, and the stochastic process is homogeneous Poisson
process(HPP), not NHPP. Table 1 shows the mean value functions of basic NHPP models. In
Table 1, a is the expected number of all faults (failures), b is the parameter related to the fault
(failure) detection rate, and c is the odds ratio of non-detectable faults to detectable faults®.
Parameters a, b and c are estimated from actual data by using statistical method such as
maximum-likelihood method or least-square method. We now propose modeling code churn in
open source development, just as the above fault-detection: a change of code is considered as a
stochastic event, and the amount of code churn is explained by a growth curve model based on
NHPP. Although a strictly modeling should take considerations for the type and amount of each
code churn, first we try to explore the availability of above macro models.

3. Empirical Work

In this section, we explore the trend of code churn from a practical open source development
project, Eclipse[2]. Then we try to fit the above NHPP models to the actual data, and discuss the
ability to predict the code churn.

3.1. Experimental Objects

Our experimental objects are 12 packages included in Eclipse, shown in Table 2, that have
been actively developed with more code churn. Since a package is a set of source files that are
related to each other structurally and/or semantically, we considered a package to be an
appropriate unit of analysis for a code churn. We collected monthly code churn in those
packages until Oct.1st, 2009. Although there are several releases of Eclipse in our data-
collection period, we consider the cross-release issue would be of little concern, since all the
target packages provide core functionalities of Eclipse, and such core functionalities would be
continuously maintained through the releases.

3.2. Preliminary Work: Fitting

To find an appropriate mathematical model of code churn, we perform preliminary
experiments for fitting the above three NHPP models to practical data of Eclipse. Figure 3 shows
an instance of inflection S-shaped curve fitted to actual data in org.eclipse.core.runtime, whose
mean value function is estimated as

3 This is from the notion that some faults would be non-detectable in early testing stage since they
were hidden by another faults. Such non-detectable faults would become detectable after the other
detectable faults were fixed.

50 H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ...

| — p—0-002¢

= 13382.07 - -
H(t) = 1338207 — oo -

Table 2. Packages used in the empirical study.

2
o

package
org.eclipse.core.internal.content
org.eclipse.core.internal.jobs
org.eclipse.core.internal.localstore
org.eclipse.core.internal.plugins
org.eclipse.core.internal.preferences
org.eclipse.core.internal.registry
org.eclipse.core.internal.runtime
org.eclipse.core.resources
org.eclipse.core.runtime
org.eclipse.debug.core.model
org.eclipse.jdt.core.dom
org.eclipse.jdt.internal.compiler.parser

e b
R O WLVLOoNOUAWRNR

s
N

12000
|

10000

fitted S-shaped curve

8000

6000

changed LOC

4000

2000

T T T T T T
0 20 40 60 80 100

development period (month)
Figure 3. Fitting of an inflection S-shaped curve to actual data in “org.eclipse.core.runtime.”

In Fig.3, the actual data is the monthly cumulative code churn (changed LOC) during the
development, and the fitted curve is obtained through the least-square method. R[13] could
automatically calculate the curve parameters so that the square error with actual data is
minimal. In this example (Fig.3), while the early stage of development is roughly traced, the
later stage is well-fitted and a convergence of the code churn may be modeled successfully. For
all models shown in Table 1 and all packages shown in Table 2, we perform to estimate the
curve parameters using R. See Table 4 in Appendix A for the list of estimated parameters.

Table 3 shows the mean magnitude of relative error (MMRE) as the results of fitting three
models shown in Table 1; the less MMRE value indicates the better fitting. In our preliminary

H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ... 51

work, the inflection S-shaped model could show better fittings to the real code churn in Eclipse
than the other models. We now consider the inflection S-shaped model to be a preferable
model for explaining code churn, and we next try to use the model for predicting code churn in
the following empirical work.

3.3. Procedure and Results: Predicting

We performed experiments for predicting code churn with the inflection S-shaped model. In
our experiments, we predicted code churn in the next n month(s), for n = 1, 2, ..., 24. Notice
that data before the inflection point of S-shaped curve could not build any stable prediction
model, so we performed the experiments using data in later stage of the package development.

Table 3. MMRE in fittings.

No. | exponential delayed S-shaped inflection S-shaped
1] 0.235 0.117 0.164
2 | 0.0487 0.0294 0.0284
3 | 0.149 0.182 0.16
4 | 0.0412 0.0381 0.0318
5 | 0.0457 0.0633 0.0426
6 | 5.44 2.12 0.615
7 | 0.324 0.146 0.0962
8 | 0.348 0.12 0.22
9 | 0.191 0.163 0.142
10 | 0.272 0.11 0.176
11 | 0.981 0.435 0.225
12 | 0.189 0.17 0.135
Total | 0.689 0.308 0.17

Experimental procedure for predicting code churn in the next n months:

Given the cumulative code churn ¢(t) in the first t months (t = 1, ..., N; N is the final month in
the data collection. N varies from package to package since each package has a different time of
starting the development.).

(1) Iterate the following (2) and (3) for x = Ty; Ty + 1, ..., N — x; Ty is the beginning month of the
later developmental stage. We put Ty = 34 from the actual data distribution.

(2) Build the inflection S-shaped model H,(t) using c(t) (t = 1, ..., x), where t = x is regarded as
the current month on the package development.

(3) Predict code churn in the next n months, c(t = x + n), and calculate the magnitude of relative
error(MRE): MRE = | c(x + n) — Hy(x + n)|/c(x + n).

(4) Calculate MMRE, the mean of MREs obtained in (3).

While MMRE = 0 is ideal for any prediction model, it would be not expected in the real world,
and we should introduce a realistic threshold value of MMRE to be acceptable as a prediction
model. Myrtveit et al.[9] have stated that MMRE = 0:25 is an acceptable level of an effort
prediction model. This paper will consider that MMRE = 0:25 is a basic criterion of a prediction
model as well. Moreover we will empirically regard MMRE < 0:10 as a high-practical utility of a
prediction model.

Figure 4 shows the prediction results in the above 12 packages. The X-axis represents the
prediction time n as in “the next n months prediction,” and the Yaxis represents MMRE of the
prediction. From Fig.4, we can see that the proposed models could predict code churn in the
next 13 months with MMRE < 0.25 for all packages. Moreover, the proposed models could
predict code churn in the next 5 months with MMRE < 0:10, and the results show a practical
utility of the proposed ones.

52 H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ...

0.8
|

org.eclipse.core.internal.content
org.eclipse.core.internal.jobs
org.eclipse.core.internal.localstore
org.eclipse.core.internal.plugins
org.eclipse.core.internal.preferences
org.eclipse.core.internal.registry
org.eclipse.core.internal.runtime
org.eclipse.core.internal.utils
org.eclipse.core.resources
org.eclipse.core.runtime
org.eclipse.debug.core.model
org.eclipse.jdt.core.dom s *

0.6
BEEedKkIAOX+DoO

MMRE
0.4

MMRE=0.25

prediction time (month) --- when predictions were made before

Figure 4. MMRE of predicted code churn in the next n month(s).

4. Conclusion and Future Work

This paper has considered a code churn in open source development to be a stochastic event,
and proposed a prediction model based on the non-homogeneous Poisson process (NHPP). The
empirical work using Eclipse source code has showed that: (1) an inflection S-shaped curve
would be better model for fitting and predicting practical code churn; (2) the proposed model
could predict code churn in the next 5 months with less than 10% error, and in the next 13
months with less than 25% error, repectively.

In the above small trial using Eclipse, the proposed approach have been supported: an
inflection S-shaped curve model could predict code churn properly, and a similar tendency has
been indicated for all experimental packages. We conclude that a NHPP-based model might be
a promising model for predicting code churn in open source development.

To prove the generality of our proposal, we will perform further experiments for many other
0SS packages as our future work, since the above empirical work was limited in only 12 core
packages of Eclipse. Another future work includes an analysis of code churn itself. In the above
empirical work, we omitted the contents and semantics of code changes. We will have to focus
on code churn in detail with some related work, e.g.[6], for more accurate prediction model.

H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ... 53

Acknowledgment

The authors would like to thank the anonymous reviewers for their thoughtful comments and
helpful suggestions the first version of this paper. This research was partially supported by the
Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B), 2010,
22700035.

References

(1]

[2]
[3]

[4]
(5]
(6]
(7]
(8]
[9]
[10]
[11]

[12]
[13]

(14]
[15]

H. Aman. DiffLineCounter, [Online] Available from: http://www.hpc.cs.ehime-u.ac.jp/
~aman/project/tool/DiffLineCounter.html [Accessed 31 March 2010].

Eclipse.org, [Online] Available from: http://www.eclipse.org/ [Accessed 31 March 2010].

A.L. Goel. Software Reliability Models: Assumptions, Limitations, and Applicability. /EEE Trans. Softw.
Eng. 1985; SE-11(12):1411-1423.

Free Software Foundation, Diffutiis - GNU Project, [Online] Available from:
http://www.gnu.org/software/diffutils/diffutils.html [Accessed 31 March 2010].

M.W. Godfrey and Q. Tu. Evolution in Open Source Software: A Case Study. Proc. In- ternational Conf.
on Software Maintenance. 2000; 131.

S. Kim, E.J. Whitehead Jr. and Y. Zhang. Classifying Software Changes: Clean or Buggy?. IEEE Trans.
Softw. Eng. 2008; 34(2):181-196.

G. Lawton. The Changing Face of Open Source. IEEE Computer 2009; 42(5):14-17.

MSR Home Page, [Online] Available from: http://www.msrconf.org [Accessed 31 March 2010].

I. Myrtveit, et al. Reliability and Validity in Comparative Studies of Software Prediction Models. |EEE
Trans. Softw. Eng. 2005; 31(5):380-391.

R. Nelson. Probability, stochastic processes, and queueing theory: the mathematics of com- puter
performance modeling. New York: Springer-Verlag; 1995.

J.W. Paulson, G. Succi and A. Eberlein, An Empirical Study of Open-Source and Closed- Source
Software Products. IEEE Trans. Softw. Eng. 2004; 30(4):246-256.

SourceForge.net, [Online] Available from: http://sourceforge.net/ [Accessed 31 March 2010].

The R Project for Statistical Computing, [Online] Available from: http://www.rproject. org/ [Accessed
31 March 2010].

A. Wood. Predicting Software Reliability. IEEE Computer 1996; 29(11):61-68.

G. Xie, J. Chen and I. Neamtiu. Towards a Better Understanding of Software Evolution: An Empirical
Study on Open Source Software. Proc. International Conf. on Software Maintenance. 2009; 51-60.

A. Parameters of growth curves fitted to actual data

Table 4 shows the estimated parameters of growth curves fitted to actual data in our
preliminary work.

54

H. Aman et al. / An Application of Growth Curve Model for Predicting Code Churn ...

Table 4. Parameters of growth curves fitted to actual data.

No. exponential delayed S-shaped inflection S-shaped
1 a 6037.38 5957.08 5972.24
b 0.115 0.237 0.195
c — — 1.92
2 a 9131.02 9015.27 9051.06
b 0.122 0.259 0.190
c — — 1.31
3 a 19600.46 13537.54 12646.03
b 0.011 0.044 0.060
c — — 7.31
4 a 9545.11 9446.24 9486.79
b 0.098 0.204 0.142
c — — 1.02
5 a 6942.22 6853.45 7051.96
b 0.292 0.759 0.090
[4 — — [0.811
6 a 10645.46 10330.53 10101.12
b 0.068 0.152 0.356
c — — 81.2
7 a 23268.11 17309.13 15770.28
b 0.013 0.049 0.091
c — — 19.4
8 a 14897.73 13179.17 13240.86
b 0.026 0.071 0.062
[4 — — 2.45
9 a 16377.10 14043.96 13382.07
b 0.021 0.059 0.092
c — — 12.7
10 a 5009.16 4357.77 4389.72
b 0.023 0.063 0.054
c — — 2.41
11 a 163389.47 134594.52 120721.60
b 0.020 0.061 0.257
c — — 1035.11
12 a 108777.07 86055.38 79979.82
b 0.016 0.053 0.087
c — — 13.0

